Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 890-893    DOI:
Original Articles |
Synchronization Scheme for Uncertain Chaotic Systems via RBF Neural Network
CHEN Mou1;JIANG Chang-Sheng1;WU Qing-Xian1;CHEN Wen-Hua2
1Automation College, Nanjing University of Aeronautics and Astronautics, Nanjing 2100162Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
Cite this article:   
CHEN Mou, JIANG Chang-Sheng, WU Qing-Xian et al  2007 Chin. Phys. Lett. 24 890-893
Download: PDF(231KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A sliding mode adaptive synchronization controller is presented with a neural network of radial basis function (RBF) for two chaotic systems. The uncertainty of the synchronization error system is approximated by the RBF neural network. The synchronization controller is given based on the output of the RBF neural network. The proposed controller can make the synchronization error convergent to zero in 5s and can overcome disruption of the uncertainty of the system and the exterior disturbance. Finally, an example is given to illustrate the effectiveness of the proposed synchronization control method.
Keywords: 05.45.Pq      05.45.Gg     
Received: 18 September 2006      Published: 26 March 2007
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0890
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Mou
JIANG Chang-Sheng
WU Qing-Xian
CHEN Wen-Hua
[1] Wang J G and Zhao Y 2005 Chin. Phys. Lett. 22 2508
[2] Guan X P and He Y H 2004 Chin. Phys. Lett. 21 227
[3] Liu G G and Zhao Y 2005 Chin. Phys. Lett. 22 1069
[4] Yu Y G and Zhang S C 2004 Chaos, Solitons Fractals 21 643
[5] Guan X P, Fan Z P and Peng H P 2001 Acta Phys. Sin. 501670 (in Chinese)
[6] Tong S C and Li H X 2003 IEEE Trans. Fuzzy Systems 11354
[7] Lin W S and Chen C S 2002 IEEE Proc. Control Theory Appl. 149 193
[8] Wang C C and Su J P 2004 Chaos, Solitons Fractals 20 967
[9] Zhang H, Ma X K and Liu W Z 2004 Chaos, SolitonsFractals 21 1249
[10] Li Z and Shi S J 2003 Phys. Lett. A 311 389
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 890-893
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 890-893
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 890-893
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 890-893
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 890-893
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 890-893
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 890-893
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 890-893
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 890-893
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 890-893
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 890-893
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 890-893
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 890-893
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 890-893
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 890-893
Viewed
Full text


Abstract