Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 886-889    DOI:
Original Articles |
Non-Smooth Bifurcation and Chaos in a DC-DC Buck Converter
QIN Zhi-Ying 1,2;LU Qi-Shao 1
1School of Science, Beijing University of Aeronautics and Astronautics, Beijing 1000832School of MEE, Hebei University of Science and Technology,Shijiazhuang 050054
Cite this article:   
QIN Zhi-Ying, LU Qi-Shao 2007 Chin. Phys. Lett. 24 886-889
Download: PDF(307KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A direct-current--direct-current (DC-DC) buck converter with integrated load current feedback is studied with three kinds of Poincare maps. The external corner-collision bifurcation occurs when the crossing number per period varies, and the internal corner-collision bifurcations occur along with period-doubling and period-tripling bifurcations in this model. The multi-band chaos roots in external corner-collision bifurcation and often grows into 1-band chaos. A new kind of chaotic sliding orbits, which is more complex for non-smooth systems, is also found in this model.
Keywords: 05.45.-a      84.32.Dd     
Received: 07 July 2006      Published: 26 March 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.32.Dd (Connectors, relays, and switches)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0886
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Zhi-Ying
LU Qi-Shao
[1] Fossas E and Olivar G 1996 IEEE Trans. CSFTA 43 13
[2] Chakrabarty K, Podder G and Banerjee S 1995 IEEE Trans.Power Electron. 11 439
[3] Nordmark A 1997 Phys. Rev. E 55 62
[4] Chin W, Ott E and Nusse H E et al 1994 Phys. Rev. E 50 4427
[5] Bernardo M D, Budd C J and Champneys A R 2001 Physica D 154 171
[6] Ma Y, Kawakami H and Tse C K 2004 IEEE Trans. CS-IRegular Paper 51 1184
[7] Bernardo M D, Budd C J and Champneys A R 2001 Phys. Rev.Lett. 86 2553
[8] Nusse H E and Yorke J A 1994 Phys. Rev. E 49 1073
[9] Banerjee S, Ott E, Yorke J A and Yuan G H 1997 PowerElectron. Spectrosc. Conf. 2 1337
[10] Yuan G H, Banerjee S, Ott E and Yorke J A 1998 IEEETrans. CSFTA 45 707
[11] Bernardo M D, Garofalo F and Glielmo L etc.1997 Power Electron. Spectrosc. Conf. 1 754
[12] Bernardo M D, Budd C J and Champneys A R 1998 Nonlinearity 11 859
[13] Bernardo M D, Kowalczyk P and Nordmark A 2002 Physica D 170 175
[14] Kunze M 2000 Non-Smooth Dynamical Systems (New York:Springer) p 136
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 886-889
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 886-889
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 886-889
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 886-889
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 886-889
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 886-889
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 886-889
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 886-889
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 886-889
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 886-889
Viewed
Full text


Abstract