Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 851-854    DOI:
Original Articles |
Coherence-Like States of Two Coulomb-Correlated Ions Confined in a Paul Trap
LI Hui;HAI Wen-Hua;CHEN Wen-Qin;XU Jun
Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
LI Hui, HAI Wen-Hua, CHEN Wen-Qin et al  2007 Chin. Phys. Lett. 24 851-854
Download: PDF(214KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the n×n coherence-like state solutions in the cases of n,n'=1,2,... for the system including two Coulomb-correlated ions confined in a one-dimensional Paul trap with a time-dependent harmonic potential. One of the n' exact solutions of the centre-of-mass motion describes a generalized coherent state. For a small driving strength the n approximate solutions of relative motion are constructed, which describe the coherent oscillations of the two ions around the classical equilibrium position.
Keywords: 03.65.Ge      32.80.Pj      31.15.Md     
Received: 20 November 2006      Published: 26 March 2007
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  32.80.Pj  
  31.15.Md  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/0851
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hui
HAI Wen-Hua
CHEN Wen-Qin
XU Jun
[1] Bauer P S 1931 Proceedings of the National Academy ofSciences of USA 17 311
[2] Bateman H 1931 Phys. Rev. 38 815
[3] Caldirola P 1941 Nuovo Cimento 18 393
[4] Xu G O and Xu M J 2005 Chin. Phys. Lett. 22 1303
[5] Xu G O, Xu M J and Yang Y T 2005 Chin. Phys. Lett. 221573
[6] Ray J R 1979 Am. J. Phys. 47 626
[7] Englman R and Yahalom A 2003 Phys. Lett. A 314 367
[8] Loudon R 1970 J. Phys. A 3 233
[9] Ruppin R 2002 Phys. Lett. A 299 309
[10] Cui T J and Kong J A 2004 Phys. Rev. B 70 205106
[11] Riewe F 1996 Phys. Rev. E 53 1890
[12] Riewe F 1997 Phys. Rev. E 55 3581
[13] Miller K S and Ross B 1993 An Introduction to the FractionalCalculus and Fractional Differential Equations (New York: Wiley)
[14] Landau L D, Lifshitz E M and Pitaevskii L P 1984 Electrodynamics of Continuous Media 2nd edn (Oxford: Pergamon)
[15] Jackson J D 1999 Classical Electrodynamics 3rd edn (NewYork: Wiley) chap 6
[16] Smith D R and Kroll N 2000 Phys. Rev. Lett. 85 2933
[17] Shelby R A, Smith D R and Schultz S 2001 Science 29277
[18] Pendry J B and Smith D R 2004 Physics Today 57(2)37
[19] Grbic A and Eleftheriades G V 2004 Phys. Rev. Lett. 92117403
[20] Jiang H T, Chen H, Li H Q and Zhang Y W 2005 Chin. Phys.Lett. 22 884
[21] Quan B G, Li C, Sui Q, Li J J, Liu W M, Li Fang and Gu C Z 2005 Chin. Phys. Lett. 22 1243
[22] Goldstein H 1950 Classical Mechanics (Reading, MA: Addison-Wesley)
[23] Broadbent C, Hovhammisyan G, Peatross J, Clayton M and Glasgow S2002 arXiv: physics/0207117
[24] Rosenberg R M 1977 Analytical Dynamics of Discrete Systems(New York: Plenum) chaps 10 and 16
[25] Meirovitch L 1970 Methods of Analytical Dynamics (New York:McGraw-Hill) chap 2
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 851-854
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 851-854
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 851-854
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 851-854
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 851-854
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 851-854
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 851-854
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 851-854
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 851-854
[10] MA Yan**, LI Tong-Bao, WU Wen, XIAO Yi-Li, ZHANG Ping-Ping, GONG Wei-Gang . Laser-Focused Atomic Deposition for Nanascale Grating[J]. Chin. Phys. Lett., 2011, 28(7): 851-854
[11] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 851-854
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 851-854
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 851-854
[14] LIU Qu, , HUANG Yao, , CAO Jian, , OU Bao-Quan, , GUO Bin, **, GUAN Hua, HUANG Xue-Ren, ***, GAO Ke-Lin, *** . Frequency Measurement of the Electric Quadrupole Transition in a Single Laser-Cooled 40Ca+[J]. Chin. Phys. Lett., 2011, 28(1): 851-854
[15] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 851-854
Viewed
Full text


Abstract