Chin. Phys. Lett.  2007, Vol. 24 Issue (4): 1017-1020    DOI:
Original Articles |
Phonon Transmission and Thermal Conductance in Fibonacci Wire at Low Temperature
ZHANG Yong-Mei 1,2;XU Chen-Hua 1;XIONG Shi-Jie 2
1Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 2100162National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
Cite this article:   
ZHANG Yong-Mei, XU Chen-Hua, XIONG Shi-Jie 2007 Chin. Phys. Lett. 24 1017-1020
Download: PDF(273KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the phonon transmission and thermal conductance in a general Fibonacci quasicrystal by the model of lattice dynamics and the technique of transfer matrix. It is found that quasiperiodic distribution of masses may greatly destroy the phonon transport at both low and high frequencies and thus may affect the thermal conductance. The thermal conductance increases with temperature at low temperatures and displays saturation with further increase of the temperature. Such saturation behaviour is preserved even when the mass ratio of atoms in the Fibonacci chain is changed.
Keywords: 66.70.+f      63.22.+m      68.65.La     
Received: 03 November 2006      Published: 26 March 2007
PACS:  66.70.+f  
  63.22.+m  
  68.65.La (Quantum wires (patterned in quantum wells))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I4/01017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yong-Mei
XU Chen-Hua
XIONG Shi-Jie
[1] Terrano M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[2] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[3] Yao Z, Wang J S, Li B and Liu G R 2005 Phys. Rev. B 71 085417
[4] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
[5] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
[6] Li W X, Chen K Q et al 2004 Appl. Phys. Lett. 85 822
[7] Xiao Y, Yan X H, Cao J X, Mao Y L, Deng Y X, Ding J W 2004 Chin. Phys. Lett. 21 517
[8] Zhang Y M and Xiong S J 2005 Phys. Rev. B 72 115305
[9] Zink B L, Pietri R and Hellman F 2006 Phys. Rev. Lett. 96 055902
[10] Kengne E and Liu W M 2006 Phys. Rev. B 73 026603
[11] He L X, Wu Y K and Kuo K H 1988 J. Mater. Sci. Lett. 7 1284
[12] Chernikov M A, Bianchi A and Ott H R 1995 Phys. Rev.B 51 153
[13] Peng R W et al 1999 Phys. Rev. B 59 3599
[14] Zhang Y Y and Xiong S J 2005 Phys. Rev. B 72 132202
[15] Maci\'{a E 2000 Phys. Rev. B 61 6645
[16] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
[17] Madelung O 1980 Introduction to Solid State Theory(New York: Springer) chap 9
Related articles from Frontiers Journals
[1] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 1017-1020
[2] WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng, LI Shui. The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices[J]. Chin. Phys. Lett., 2010, 27(1): 1017-1020
[3] WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 1017-1020
[4] ZHOU Ben-Liang, LIAO Wen-Hu, ZHOU Guang-Hui,. Conductance of a Quantum Dot in the Presence of a Phonon Field[J]. Chin. Phys. Lett., 2008, 25(2): 1017-1020
[5] PAN Rui-Qin, XU Zi-Jian, ZHU Zhi-Yuan. Length Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2007, 24(5): 1017-1020
[6] LI Xin-Xia, TANG Yi. Anomalous Heat Conduction in One-Dimensional Dimerized Lattices[J]. Chin. Phys. Lett., 2007, 24(4): 1017-1020
[7] LU Jian-Duo, SHAO Liang, HOU Yang-Lai, YI Lin. Phonon Transport and Thermal Conductivity in an Acoustic Filter[J]. Chin. Phys. Lett., 2007, 24(3): 1017-1020
[8] LI Wen-Xia, LIU Tian-Yu, LIU Chang-Long. Acoustic Phonon Thermal Transport through a Nanostructure[J]. Chin. Phys. Lett., 2006, 23(9): 1017-1020
[9] XUE Cheng-Shan, WU Yu-Xin, ZHUANG Hui-Zhao, TIAN De-Heng, LIU Yi-An, HE Jian-Ting, AI Yu-Jie, SUN Li-Li, WANG Fu-Xue, CAO Yu-Ping. Fabrication of Syringe-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2006, 23(3): 1017-1020
[10] GAO Chun-Ming, ZHANG Shu-Yi, ZHANG Zhong-Ning, SHUI Xiu-Ji, JIANG Tao. Thermal Properties of Materials Characterized by Scanning Electron-Acoustic Microscopy[J]. Chin. Phys. Lett., 2005, 22(9): 1017-1020
[11] GAO Hui-Ping, WU Bai-Mei, LI Bo, WANG Ming, DU Kan. Thermal Conductivity Anomalies Related to the Double-Bump of Resistivity in Nd0.7Sr0.3Mn1-xCrxO3[J]. Chin. Phys. Lett., 2005, 22(4): 1017-1020
[12] XIAO Yang, YAN Xiao-Hong, CAO Jue-Xian, MAO Yu-Liang, DENG Yu-Xiang, DING Jian-Wen. Lattice Dynamics of Potassium-Doped Single-Walled Carbon Nanotubes [J]. Chin. Phys. Lett., 2004, 21(3): 1017-1020
[13] YANG Zheng, SHI Yi, LIU Jian-Lin, YAN Bo, HUANG Zhuang-Xiong, PU Lin, ZHENG You-Dou, WANG Kang-Long. Strain and Phonon Confinement in Self-Assembled Ge Quantum Dot Superlattices[J]. Chin. Phys. Lett., 2003, 20(11): 1017-1020
[14] LÜ, You-Ming, SHEN De-Zhen, LIU Yi-Chun, LI Bing-Hui, LIANG Hong-Wei, ZHANG Ji-Ying, FAN Xi-Wu. Optical Properties of ZnCdSe/ZnMgSe Multiple Quantum Wells Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2002, 19(8): 1017-1020
[15] ZHANG Li-Gong, SHEN De-Zhen, FAN Xi-Wu, LU Shao-Zhe. Exciton-Phonon Scattering in CdSe/ZnSe Quantum Dots [J]. Chin. Phys. Lett., 2002, 19(4): 1017-1020
Viewed
Full text


Abstract