Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 359-362    DOI:
Original Articles |
Controlling Spatiotemporal Chaos with a Generalized Feedback Method
GAO Ji-Hua 1,2;ZHENG Zhi-Gang 3
1 College of Materials, Shenzhen University, Shenzhen 518060 2 Shenzhen Key Laboratory of Special Functional Materials, Shenzhen niversity, Shenzhen 518060 3 Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
GAO Ji-Hua, ZHENG Zhi-Gang 2007 Chin. Phys. Lett. 24 359-362
Download: PDF(234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The usual linear variable feedback control method is extended to a generalized function feedback scheme. The scheme is applied to high-dimensional spatiotemporal systems. By a combination of local generalized feedback control and the spatial coupling effect among elements, turbulent motion can be successfully eliminated.
Keywords: 05.45.Gg      47.27.Rc     
Received: 15 September 2006      Published: 24 February 2007
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  47.27.Rc (Turbulence control)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0359
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Ji-Hua
ZHENG Zhi-Gang
[1] Ott E, Grebogi C and York J 1990 Phys. Rev. Lett. 641196
[2] Pecora L and Carroll T 1990 Phys. Rev. Lett. 64 821
[3] Pyragas K 1992 Phys. Lett. A 170 421
[4] Shinbrot T, Grebogi C, Ott E et al 1993 Nature 363 411
[5] Zheng Z G, Hu G and Hu B B 2001 Chin. Phys. Lett. 18874
[6] Hu G and Qu Z L 1994 Phys. Rev. Lett. 72 68
[7] Kocarev L, Parlitz U, Stojanovski T et al 1997 Phys. Rev.E 56 1238
[8] Zhang X and Shen K 2001 Phys. Rev. E 63 046212
[9] Xiao J H, Hu G and Hu B B 2004 Chin. Phys. Lett. 211224
[10] Alonso S, Sagues F and Mikhailov A S 2003 Science 2991722
[11] Zhang H, Cao Z J, Wu N J et al 2005 Phys. Rev. Lett. 94 188301
[12] Jiang M X, Wang X N, Ouyang Q et al 2004 Phys. Rev. E 69 056202
[13] Wang X N, Lu Y, Jiang M X et al 2004 Phys. Rev. E 69056223
[14] Xiao J H, Hu G, Yang J Z et al 1998 Phys. Rev. Lett. 81 5552
[15] Hu G, Xiao J H, Gao J H et al 2000 Phys. Rev. E 62R3043
[16] Tang G N and Hu G 2006 Chin. Phys. Lett. 23 1523
[17] Gao J H, Wang X G, Hu G et al 2001 Phys. Lett. A 283342
[18] Janiaud B, Pumir A, Bensimon D et al 1992 Physica D 55269
[19] Cross M and Hohenberg P 1993 Rev. Mod. Phys. 65 851
[20] Guan S G, Li K and Lai C H 2006 Chaos 16 023107
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 359-362
[2] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 359-362
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 359-362
[4] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 359-362
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 359-362
[6] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 359-362
[7] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 359-362
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 359-362
[9] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 359-362
[10] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 359-362
[11] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 359-362
[12] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 359-362
[13] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 359-362
[14] DU Mao-Kang**, HE Bo, WANG Yong . Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(1): 359-362
[15] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 359-362
Viewed
Full text


Abstract