ün" /> ün, I. Tarhan, H. Baysal," /> ün, I. Tarhan, H. Baysal," />
Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 355-358    DOI:
Original Articles |
On the Energy-Momentum Problem in Static Einstein Universe
S. Aygün 1,3;I. Tarhan 1,3; H. Baysal 2,3
1 Department of Physics, Art and Science Faculty, Terziolu Campus, anakkale Onsekiz Mart University, 17020 Çanakkale, Turkey 2 Department of Secondary Science and Mathematics Education, Education Faculty, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey 3 Institute of Theoretical and Applied Physics, Turunç-Marmaris, Turkey
Cite this article:   
S. Ayg
Download: PDF(161KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy-momentum distributions of Einstein's simplest static geometrical model for an isotropic and homogeneous universe are evaluated. For this purpose, Einstein, Bergmann--Thomson, Landau--Lifshitz (LL), Moller and Papapetrou energy-momentum complexes are used in general relativity. While Einstein and Bergmann--Thomson complexes give exactly the same results, LL and Papapetrou energy-momentum complexes do not provide the same energy densities. The Moller energy-momentum density is found to be zero everywhere in Einstein's universe. Also, several spacetimes are the limiting cases considered here.
Keywords: 04.20.Cv      04.20.+q     
Received: 13 October 2006      Published: 24 February 2007
PACS:  04.20.Cv (Fundamental problems and general formalism)  
  04.20.+q  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0355
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Ayg FONT-FAMILY: 宋体
mso-bidi-font-size: .0pt
mso-bidi-font-family: 'Times New Roman'
mso-ansi-language: EN-US
mso-fareast-language: ZH-CN
ün')" href="#">mso-bidi-language: AR-SA">ün
I. Tarhan
H. Baysal
[1] Einstein A 1915 Preuss. Akad. Wiss. Berlin 47 778
[2] Tolman R C 1934 Relativity, Thermodynamics andCosmology (Oxford: Oxford University Press) p 227
[3] Papapetrou A 1948 Proc. R. Irish Acad. A 5211
[4] Bergmann P G and Thomson R 1953 Phys. Rev. 89400
[5] M\o ller C 1958 Ann. Phys. (N.Y.) 4 347 M\o ller C 1961 Ann. Phys. (N.Y.) 12 118
[6] Landau L D and Lifshitz E M 1987 The Classical theoryof Fields 4th edn (Oxford: Pergamon)
[7] Weinberg S 1972 Gravitation and Cosmology: Principleand Applications of General Theory of Relativity (New York: Wiley)
[8] Qadir A and Sharif M 1992 Phys. Lett. A 167331
[9] Vargas T 2004 Gen. Rel. Gravit. 361255
[10] Mikhail F I, Wanas M I, Hindawi A and Lashin E I 1993 Int. J. Theor. Phys. 32 1627
[11] Salti M 2005 Astrophys. Space Sci. 299 159
[12] Aydogdu O and Salti M 2005 Astrophys. Space Sci.299 227
[13] Salti M and Havare A 2005 Int. J. Mod. Phys. A 202165
[14] Havare A, Korunur M and Salti M 2006 Astrophys. SpaceSci. 301 43
[15] Radinschi I 2000 Mod. Phys. Lett. A 15 2171
[16] Virbhadra K S 1990 Phys. Rev. D 41 1086 Virbhadra K S 1990 Phys. Rev. D 42 1066 Virbhadra K S 1990 Phys. Rev. D 42 2919 Virbhadra K S 1992 J. Phys. (Pramana) 38 31 Rosen N and Virbhadra K S 1993 Gen. Rel. Grav. 25 429 Virbhadra K S and Parikh J C 1993 Phys. Lett. B 317 312 Virbhadra K S and Parikh J C 1994 Phys. Lett. B 331 302
[17] Xulu S S 1998 Int. J. Theor. Phys. 37 1773 Xulu S S 1998 Int. J. Mod. Phys. D 7 773 Vagenas E C 2003 Int. J. Mod. Phys. A 18 5949 Vagenas E C 2005 Int. J. Mod. Phys. D 14 573 Vagenas E C 2003 Int. J. Mod. Phys. A 18 5781 Vagenas E C 2006 Mod. Phys. Lett. A 21 1947 Radinschi I 1999 Acta Phys. Slov. 49 789 Ching-Yang I and Radinschi I 2003 Chin. J. Phys. 41 326 Gad R 2004 Astrophys. Space Sci. 293 453 Radinschi I 2000 Mod. Phys. Lett. A 15 2171 Sharif M and Fatima T 2005 Int. J. Mod. Phys. A 20 4309 Gad R 2005 Astrophys. Space Sci. 295 451 Gad R 2004 Astrophys. Space Sci. 293 453
[18] Vagenas E C 2004 Mod. Phys. Lett. A 19 213
[19] Aygun S, Aygun M and Tarhan I 2006 ActaPhysica Polonica B 37 2781 Aygun M, Y\ilmaz I and Aygun S 2006 Acta PhysicaPolonica B 37 2795 Aygun M et al gr-qc/0607102 gr-qc/0607110gr-qc/0607115 gr-qc/0607119 gr-qc/0607126
[20] Aygun S, Baysal H and Tarhan I gr-qc/0608024gr-qc/0607109 gr-qc/0607089
[21] Bonnor W B and Vaidya P C 1970 Gen. Rel. Grav. 1127
[22] Patel L K and Akabari R P 1979 J. Phys. A 12223
[23] Sharif M 2002 Int. J. Mod. Phys. A 17 1175
[24] Sharif M and Fatima T 2005 Nuovo Cimento B 120 533
[25] Patashnick O 2005 Int. J. Mod. Phys. D 14 1607
[26] Sharif M 2004 Int. J. Mod. Phys. D 13 1019
[27] Gad R 2004 Mod. Phys. Lett. A 19 1847
[28] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: Freeman) p 603
[29] Cooperstock F I and Sarracino R S 1978 J. Phys. A 11 877
[30] Bondi I I 1990 Proc. R. Soc. London A 427 249
[31] Penrose R 1982 Proc. Roy. Soc. London A 388 457
[32] Hayward S A 1994 Phys. Rev. D 49 831
[33] Bergqvist G 1992 Class. Quantum Gravit. 91753
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 355-358
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 355-358
[3] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 355-358
[4] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 355-358
[5] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 355-358
[6] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 355-358
[7] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 355-358
[8] N. Ibotombi Singh, S. Kiranmla Chanu, S. Surendra Singh. Cosmological Models with Time Dependent G and Λ Coupling Scalars[J]. Chin. Phys. Lett., 2009, 26(6): 355-358
[9] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 355-358
[10] Zade S S, Patil K D, Mulkalwar P N. Non-Spherical Gravitational Collapse of Strange Quark Matter[J]. Chin. Phys. Lett., 2008, 25(5): 355-358
[11] Gamal G. L. Nashed. Moller's Energy of Kerr-NUT Metric[J]. Chin. Phys. Lett., 2008, 25(4): 355-358
[12] K. D. Patil, S. S. Zade, A. N. Mohod. Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis[J]. Chin. Phys. Lett., 2008, 25(3): 355-358
[13] ZET Gheorghe, MANTA Vasile, POPA Camelia. Gauge Model Based on Group G×SU(2)[J]. Chin. Phys. Lett., 2008, 25(2): 355-358
[14] V. Enache, Camelia Popa, V. Paun, M. Agop,. Reissner--Nordström-de--Sitter-type Solution by a Gauge Theory of Gravity[J]. Chin. Phys. Lett., 2008, 25(10): 355-358
[15] Arbab Ibrahim Arbab. Comment on `Five-Dimensional Cosmological Model with Variable[J]. Chin. Phys. Lett., 2008, 25(1): 355-358
Viewed
Full text


Abstract