Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3017-3020    DOI:
Original Articles |
Lie Symmetrical Perturbation and Adiabatic Invariants of Generalized Hojman Type for Disturbed Nonholonomic Systems
LUO Shao-Kai
1Institute of Mathematical Mechanics and Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 3100182Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018
Cite this article:   
LUO Shao-Kai 2007 Chin. Phys. Lett. 24 3017-3020
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For a nonholonomic mechanics system with the action of small disturbance, the Lie symmetrical perturbation and adiabatic invariants of generalized Hojman type are studied under general infinitesimal transformations of groups in which the generalized coordinates and timeare variable. On the basis of the invariance of disturbed nonholonomic dynamical equations under general infinitesimal transformations, the determining equations, the constrained restriction equations and the additional restriction equations of Lie symmetries of the system are constructed, which only depend on the variables t, qs and .qs. Based on the definition of higher-order adiabatic invariants of a mechanical system, the perturbation of Lie symmetries for a
nonholonomic system with the action of small disturbance is investigated, and the Lie symmetrical adiabatic invariants, the weakly Lie symmetrical adiabatic invariants and the strongly Lie symmetrical adiabatic invariants of generalized Hojman type of disturbed nonholonomic systems are obtained. An example is given to illustrate applications of the results.
Keywords: 20.20.Sv      11.30.-j      45.20.Jj     
Received: 11 May 2007      Published: 23 October 2007
PACS:  20.20.Sv  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Shao-Kai
[1] Burgers J M 1917 Ann. Phys. Lpz. 52 195
[2] Kruskal M 1962 J. Math. Phys. 3 806
[3] Djukic D J S 1981 Int. J. Nonlinear Mech. 16 489
[4] Notte J, Falans J, Chu R and Wurtele J S 1993 Phys. Rev.Lett. 70 3900
[5] Ostrovsky V N and Prudov N V 1995 J. Phys. B 20 4435
[6] Wang L and Kevorkian J 1996 Phys. Plasma 3 1162
[7] Zhao Y Y and Mei F X 1996 Acta Mech. Sin. 28 207 (inChinese)
[8] Chen X W, Zhang R C and Mei F X 2000 Acta Mech. Sin. 16 282
[9] Chen X W and Mei F X 2000 Chin. Phys. 9 721
[10] Chen X W, Shang M and Mei F X 2001 Chin. Phys. 10 997
[11] Zhang Y and Mei F X 2003 Acta Phys. Sin. 52 2368 (inChinese)
[12] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[13] Zhang Y, Fan C X and Mei F X 2006 Acta Phys. Sin. 553237 (in Chinese)
[14] Mei F X, Xie J F and Gang T Q 2007 Chin. Phys.Lett. 24 1133
[15] Mei F X 2004 Symmetries and Conserved Quantities ofGonstrained Mechanical Systems (Beijing: Beijing Institute ofTechnology) (in Chinese)
[16] Hojman S A 1992 J. Phys. A 25 L 291
[17] Zhang H B, Gu S L and Chen L Q 2005 Acta Phys. Sin. 54 2489 (in Chinese)
[18] Mei F X 1999 Applications of Lie Groups andLie Algebras to Constrained Mechanical Systems (Beijing: Science)(in Chinese)
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 3017-3020
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 3017-3020
[3] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 3017-3020
[4] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 3017-3020
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 3017-3020
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 3017-3020
[7] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 3017-3020
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 3017-3020
[9] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 3017-3020
[10] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 3017-3020
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 3017-3020
[12] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 3017-3020
[13] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 3017-3020
[14] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 3017-3020
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 3017-3020
Viewed
Full text


Abstract