Chin. Phys. Lett.  2007, Vol. 24 Issue (11): 3021-3023    DOI:
Original Articles |
Conservation Laws and Lax Pair of the Variable Coefficient KdV Equation
ZHANG Da-Jun
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
ZHANG Da-Jun 2007 Chin. Phys. Lett. 24 3021-3023
Download: PDF(180KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Keywords: 02.30.Ik      05.45.Yv     
Received: 27 June 2007      Published: 23 October 2007
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I11/03021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Da-Jun
[1] Grimshaw R 1979 Proc. Royal Soc. London A 368 359
[2] Joshi N 1987 Phys. Lett. A 125 456
[3] Zhang Y C, Yao Z Z, Zhu H W et al 2007 Chin. Phys.Lett. 24 1173
[4] Zhang Y C, Li J, Meng X H et al Sciencepaper Online,Chinese Ministry of Education No 200704-306http://www.paper.edu.cn/index.html
[5] Nirmala N, Vedan M J and Baby B V 1986 J. Math. Phys. 27 2640
[6] Nirmala N, Vedan M J and Baby B V 1986 J. Math. Phys. 27 2644
[7] Hong W and Jung Y D 1999 Phys. Lett. A 257 149
[8] Fan E G 2002 Phys. Lett. A 294 26
[9] Burtsev S P, Zakharov V E and Mikhailov A V 1987 Theor.Math. Phys. 70 227
[10] Wadati M and Sogo K 1983 J. Phys. Soc. Jpn. 52394
[11] Chen D Y 2006 Introduction to Soliton Theory(Beijing: Science) chap 7 p 188 (in Chinese)
[12] Miura R M, Gardner C S and Kruskal M D 1968 J.Math. Phys. 9 1204
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3021-3023
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 3021-3023
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 3021-3023
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 3021-3023
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 3021-3023
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3021-3023
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 3021-3023
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3021-3023
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 3021-3023
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3021-3023
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3021-3023
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3021-3023
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3021-3023
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3021-3023
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3021-3023
Viewed
Full text


Abstract