Original Articles |
|
|
|
|
Defect-Bound Carrier Mediated Room-Temperature Ferromagnetism in Co-Doped ZnO Powders |
WEN Qi-Ye1;ZHANG Huai-Wu1;SONG Yuan-Qiang1;YANG Qing-Hui1, John Q. Xiao2 |
1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 6100542Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA |
|
Cite this article: |
WEN Qi-Ye, ZHANG Huai-Wu, SONG Yuan-Qiang et al 2007 Chin. Phys. Lett. 24 2955-2958 |
|
|
Abstract We prepare pure single-phase Co:ZnO powders introducing controllable interstitial Zni by Zn vapour annealing. The as-ground powder shows that no room-temperature ferromagnetism (RT-FM) exists, while the Zn vapour treated samples exhibit unambiguous RT-FM with a maximum magnetic moment of 0.2μB/Co. The FM of Co:ZnO strongly depends on the Zn diffusion process, suggesting that not only carriers but also Zni defects play an important role in mediating FM in diluted magnetic semiconductors. A new core-shell model is proposed to interpret the mixture behaviour of FM and paramagnetism observed in the Zn vapour annealed Co:ZnO powders.
|
Keywords:
75.50.Pp
81.40.Ef
61.72.Ww
|
|
Received: 15 June 2007
Published: 20 September 2007
|
|
PACS: |
75.50.Pp
|
(Magnetic semiconductors)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
61.72.Ww
|
|
|
|
|
|
[1] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988 [2] Kim J H et al %, Kim H, Kim D, Ihm Y E and Choo W K2002 J. Appl. Phys. 92 6066 [3] Kittilstved K R and Gamelin D 2006 J. Appl. Phys. 99 08M112 [4] Saeki H, Tabata H and Kawai T 2001 Solid State Commun. 120 439 [5] Schwartz A and Gamelin D R 2004 Adv. Mater. 16 2115 [6] Venkatesan M et al %, Fitzgerald C B, Lunney J G, Coey J M D2004 Phys. Rev. Lett. 93 177206 [7] Kittilstved K R et al%Schwartz D A, Tuan A C, Heald S M, Chambers S A and Gamelin D R2006 Phys. Rev. Lett. 97 037203 [8] Kolesnik S and Dabrowski B 2004 J. Appl. Phys. 96 5379 [9] Lawes G, Risbud A S, Ramirez A P and Seshadri R 2005 Phys.Rev. B 71 045201 [10] Li W et al%, Kang Q Q, Lin Z, Chu W S, Chen D L, Wu Z Y, Yan Y, Chen D G and Huang F2006 Appl. Phys. Lett. 89 112507 [11] Zhang Z et al%, Chen Q, Lee H D, Xue Y Y, Sun Y Y, Chen H, Chen F and Chu W K2006 J. Appl. Phys. 100 043909 [12] Rao C N R and Deepak F L 2005 J. Mater. Chem. 15 573 [13] Radovanovic P V and Gamilin D R 2005 Phys. Rev. Lett. 91 157202 [14] Kittilstved K R et al %, Norberg N S and Gamelin D R2005 Phys. Rev. Lett. 94 147209 [15] Hong N H et al %, Sakai J, Huong N T, Poirot N and Ruyter A2005 Phys. Rev. B 72 045336 [16] Hsu H S et al%, Huang J C A, Huang Y H, Liao Y F, Lin M Z, Lee C H, Lee J F, Chen S%F, Lai L Y and Liu C P2006 Appl. Phys. Lett. 88 242507 [17] Venkatesan M, Fitzgerald C B and Coey J M D 2004 Nature 430 630 [18] Tiwari A et al%, Bhosle V M, Ramachandran S, Sudhakar N, Narayan J, Budak S and Gupta A2006 Appl. Phys. Lett. 88 142511 [19] Zhu T et al %, Zhan W S, Wang W G and Xiao J Q2006 Appl. Phys.Lett. 89 022508 [20] Lin H T, Chin T S and Shih J C 2004 Appl. Phys. Lett. 85 621 [21] Marcel H et al%, Sluiter F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C and Wsghmare U V2005 Phys. Rev. Lett. 94 187204 [22] Liu X C et al %, Shi E W, Chen Z Z, Zhang H W, Xiao B and Song L X 2006 Appl. Phys. Lett. 88 252503 [23] Look D C, Hemsky J W and Sizelove J R 1999 Phys. Rev. Lett. 82 2552 [24] Halliburton E L et al% Giles N C, Garces N Y, Luo M, Xu C C, and Bai L H and Boatner L A2005 Appl. Phys. Lett. 87 172108 [25] Wen Q Y et al %, Zhang H W, Song Y Q, Yang Q H, Zhu H and Xiao J Q2007 J. Phys.: Conden. Matter. 19 246205 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|