Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2773-2776    DOI:
Original Articles |
Lie Symmetries and Conserved Quantities for Super-Long Elastic Slender Rod
ZHAO Wei-Jia1;WENG Yu-Quan1;FU Jing-Li2,3
1Department of Mathematics, Qingdao University, Qingdao 2660712Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 3100183Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
ZHAO Wei-Jia, WENG Yu-Quan, FU Jing-Li 2007 Chin. Phys. Lett. 24 2773-2776
Download: PDF(354KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract DNA is a nucleic acid molecule with double-helical structures that are special symmetrical structures attracting great attention of numerous researchers. The super-long elastic slender rod, an important structural model of DNA and other long-train molecules, is a useful tool in analysing the symmetrical properties and the stabilities of DNA. We study the Lie symmetries of a super-long elastic slender rod by using the methods of infinitesimal transformation. Based on Kirchhoff's analogue, generalized Hamilton canonical equations are
analysed. The infinitesimal transformations with respect to the radian
coordinate, the generalized coordinate, and the quasi-momentum of the model are introduced. The Lie symmetries and conserved quantities of the model are presented.
Keywords: 11.30.-j      87.15.-v      87.14.Gg     
Received: 25 May 2007      Published: 20 September 2007
PACS:  11.30.-j (Symmetry and conservation laws)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.14.Gg  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02773
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Wei-Jia
WENG Yu-Quan
FU Jing-Li
[1] Liu Y Z 2006 The Non-Linear Mechanics of Elastic Rod: BasicTheory of DNA Mechanic Model (Beijing: Qinghua University Press) (inChinese)
[2] Yaoming S and John E H 1994 J. Chem. Phys. 101 5186
[3] Smith S B, Finci L and Bustamante C 1992 Science 2581122
[4] Bustamante C and Bryant Z 2003 Nature 421 423
[5] Ovsiannikov L V 1982 Group Analysis of Differential Equations(New York: Academic)
[6] Olver P T 1986 Applications of Lie Groups to DifferentialEquations (Berlin: Springer)
[7] Bluman G W and Kumei S 1989 Symmetries and DifferentialEquations (Berlin: Springer)
[8] Ibragimov N H 1985 Transformation Groups Applied toMathematical Physics (Boston: Reidel)
[9] Hydon, P 1999 Symmetry Methods for Ordinary DifferentialEquations (Cambridge: Cambridge University Press)
[10] Levi D and Winternitz P 1996 J. Math. Phys. 37 5551
[11] Lutzky M 1979 J. Phys. A 12 973
[12] Liu C S 2004 Int. J. Solids and Structure 41 1823
[13] Lafortune S, Winternitz P and Martina L 2000 J. Phys. A 33 2419
[14] Gaetano V and Patrizia V 2002 Class. Quantum Grav. 19 3333
[15] Lakshmanna M and Sahadevan R 1991 J. Math. Phys. 32 71
[16] Cicogna G and Gaeta G 1992 J. Phys. A 25 1535
[17] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 2773-2776
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 2773-2776
[3] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 2773-2776
[4] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 2773-2776
[5] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2773-2776
[6] TIE Zuo-Xiu, QIN Meng**, ZOU Da-Wei, CAO Yi**, WANG Wei . Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides[J]. Chin. Phys. Lett., 2011, 28(2): 2773-2776
[7] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 2773-2776
[8] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 2773-2776
[9] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 2773-2776
[10] PAN Bing-Yi, ZHANG Ling-Yun, DOU Shuo-Xing, WANG Peng-Ye. Effect of Laser Field and Mechanical Force on Deoxyribonucleic Acid Melting[J]. Chin. Phys. Lett., 2010, 27(7): 2773-2776
[11] M. D. Ganji, H. Yazdani. Interaction between B-Doped C60 Fullerene and Glycine Amino Acid from First-Principles Simulation[J]. Chin. Phys. Lett., 2010, 27(4): 2773-2776
[12] ZHANG Ping, WANG Hai-Jun,. Monte Carlo Simulation on Growth of Antibody-Antigen Complexes: the Role of Unequal Reactivity[J]. Chin. Phys. Lett., 2010, 27(3): 2773-2776
[13] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 2773-2776
[14] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 2773-2776
[15] LI Yan-Min. Lie Symmetries, Perturbation to Symmetries and Adiabatic Invariants of a Generalized Birkhoff System[J]. Chin. Phys. Lett., 2010, 27(1): 2773-2776
Viewed
Full text


Abstract