Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2756-2758    DOI:
Original Articles |
Experimental Confirmation of a Modified Lorenz System
LIU Ling;LIU Chong-Xin;ZHANG Yan-Bin
1Institute of Electrical Engineering, Xi'an Jiaotong University, Xi'an 7100492State Key Laboratory of Electrical Insulation and Power Equipment, Xi'anJiaotong University, Xi'an 710049
Cite this article:   
LIU Ling, LIU Chong-Xin, ZHANG Yan-Bin 2007 Chin. Phys. Lett. 24 2756-2758
Download: PDF(459KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally demonstrate the butterfly-shaped chaotic attractor we
have proposed before [Int. J. Nonlin. Sci. Numerical Simulation 7 (2006) 187]. Some basic dynamical properties and chaotic behaviour of this new butterfly attractor are studied and they are in agreement with the results of our theoretical analysis. Moreover, the proposed system is experimental demonstrated.
Keywords: 05.45.-a      05.45.Ac      05.45.Pq      82.40.Bj     
Received: 03 May 2007      Published: 20 September 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02756
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ling
LIU Chong-Xin
ZHANG Yan-Bin
[1] Lorenz E N 1963 J. Atmosph. Sci. 20 130
[2] Lorenz E N 1993 The Essence of Chaos (Seattle, WA:University of Washington Press) p 148
[3] Stewart I 2002 Nature 406 948
[4] Leonov G, Bunin A and Koksch N 1987 Zeitschrift furAngewandte Mathematik und Mechanik 67 649
[5]Robinson R C 2004 An introduction to Dynamical Systems:Continuous and Discrete (New York: Prentice-Hall) p 256
[6] R"ossler O E 1976 Phys Lett A 57 397
[7] Chen G and Dong X 1998 From Chaos to Order: Methodologies,Perspectives and Applications (Singapore: World Scientific)
[8] Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
[9] L"u J and Chen G 2002 Int. J. Bifur. Chaos. 12 659
[10] L"u J, Chen G, Cheng D Z and Celikovsky S 2002 Int. J.Bifur. Chaos 12 2917
[11] L"u J, Chen G and Cheng D Z 2004 Int. J. Bifur. Chaos 14 1507
[12] L"u J, Chen G and Zhang S 2002 Chaos, SolitonsFractals 14 669
[13] L"u J, Chen G and Zhang S 2002 Int. J. Bifur. Chaos 12 1001
[14] Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons Fractals 22 1031
[15] Chua L O, Wu C W, Huang A and Zhong G Q 1993 IEEE IEEETrans. Circuits Systems I 40 722
[16] Liu L, Su Y C and Liu X 2006 Int. J. Nonlin. Sci. NumericalSimulation 7 187
[17] L"u J, Chen G and Yu Y G 2002 Chin. Phys. Lett. 191260
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2756-2758
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2756-2758
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2756-2758
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2756-2758
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2756-2758
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2756-2758
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2756-2758
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 2756-2758
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2756-2758
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 2756-2758
Viewed
Full text


Abstract