Chin. Phys. Lett.  2007, Vol. 24 Issue (10): 2759-2761    DOI:
Original Articles |
Average Synchronization and Temporal Order in a Noisy Neuronal Network with Coupling Delay
WANG Qing-Yun1,2;DUAN Zhi-Sheng1;LU Qi-Shao3
1State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 1008712Department of Statistics and Mathematics, Inner Mongolia Finance and Economics College, Huhhot 0100513School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
Cite this article:   
WANG Qing-Yun, DUAN Zhi-Sheng, LU Qi-Shao 2007 Chin. Phys. Lett. 24 2759-2761
Download: PDF(222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Average synchronization and temporal order characterized by the rate of firing are studied in a spatially extended network system with the coupling time delay, which is locally modelled by a two-dimensional Rulkov map neuron. It is shown that there exists an optimal noise level, where average synchronization and temporal order are maximum irrespective of the coupling time delay. Furthermore, it is found that temporal order is weakened when the coupling time delay appears. However, the coupling time delay has a twofold effect on average synchronization, one associated with its increase, the other with its decrease. This clearly manifests that random perturbations and time delay play a complementary role in synchronization and temporal order.
Keywords: 05.45.-a      05.45.Xt     
Received: 18 June 2007      Published: 20 September 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I10/02759
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Qing-Yun
DUAN Zhi-Sheng
LU Qi-Shao
[1] Gerstner W and Kistler W M 2002 Spiking Neuron Models(Cambridge: Cambridge University Press)
[2] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 117
[3] Balenzuela P and Garc\'{l-Ojalvo J 2005 Phys. Rev. E 021901
[4] Wang Q Y, Lu Q S and Chen G R 2007 Physica A 374 869
[5] Wang Q Y, Lu Q S and Chen G R 2006 Eur. J. Phys. B 54 255
[6] Perc M 2005 Phys. Rev. E 72 016207
[7] Perc M 2007 Chaos, Solitons and Fractals 31 280
[8] Dhamala M, Jirsa V K and Ding M Z 2004 Phys. Rev. Lett. 92 028101
[9] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329
[10] Rulkov N F 2001 Phys. Rev. Lett. 86 183
[11]Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78775
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 2759-2761
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2759-2761
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 2759-2761
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 2759-2761
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 2759-2761
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2759-2761
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2759-2761
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 2759-2761
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 2759-2761
Viewed
Full text


Abstract