Chin. Phys. Lett.  2006, Vol. 23 Issue (12): 3334-3337    DOI:
Original Articles |
A Solvable Symbiosis-Driven Growth Model
KE Jian-Hong1,2;LIN Zhen-Quan1;CHEN Xiao-Shuang2
¹School of Physics and Electronic Information, Wenzhou University, Wenzhou 325027 ²National Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
Cite this article:   
KE Jian-Hong, LIN Zhen-Quan, CHEN Xiao-Shuang 2006 Chin. Phys. Lett. 23 3334-3337
Download: PDF(216KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a two-species symbiosis-driven growth model, in which two species can mutually benefit for their monomer birth and the self-death of each species simultaneously occurs. By means of the generalized rate equation, we investigate the dynamic evolution of the system under the monodisperse initial condition. It is found that the kinetic behaviour of the system depends crucially on the details of the rate kernels as well as the initial concentration distributions. The cluster size distribution of either species cannot be scaled in most cases; while in some special cases, they both consistently take the universal scaling form. Moreover, in some cases the system may undergo a gelation transition and the pre-gelation behaviour of the cluster size distributions satisfies the scaling form in the vicinity of the gelation point. On the other hand, the two species always live and die together.
Keywords: 68.55.Ac      89.75.Da      87.15.Rn     
Published: 01 December 2006
PACS:  68.55.Ac  
  89.75.Da (Systems obeying scaling laws)  
  87.15.Rn  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I12/03334
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KE Jian-Hong
LIN Zhen-Quan
CHEN Xiao-Shuang
Related articles from Frontiers Journals
[1] LI Ling**, JIN Zhen-Lan . Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention[J]. Chin. Phys. Lett., 2011, 28(4): 3334-3337
[2] ZHANG Jiang**, WANG You-Gui . Size Dependency of Income Distribution and Its Implications[J]. Chin. Phys. Lett., 2011, 28(3): 3334-3337
[3] ZOU Sheng-Rong, XU Ying-Ying, XU Xiu-Lian, WANG Jian, HE Da-Ren** . A Simple Model of Interaction between Journals, Authors and Editorial Board Members[J]. Chin. Phys. Lett., 2011, 28(1): 3334-3337
[4] XU Yan, GUO Liang-Peng, DING Ning, WANG You-Gui. Evidence of Scaling in Chinese Income Distribution[J]. Chin. Phys. Lett., 2010, 27(7): 3334-3337
[5] LIU Jian-Ye, , GUO Wen-Jun. Finding a Probe for Extracting Information on the Momentum Dependent-Interaction in Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(6): 3334-3337
[6] ZHU Jun-Fang, HAN Xiao-Pu, WANG Bing-Hong,. Statistical Property and Model for the Inter-Event Time of Terrorism Attacks[J]. Chin. Phys. Lett., 2010, 27(6): 3334-3337
[7] SHANG Ming-Sheng, CHEN Guan-Xiong, DAI Shuang-Xing, WANG Bing-Hong, ZHOU Tao,. Interest-Driven Model for Human Dynamics[J]. Chin. Phys. Lett., 2010, 27(4): 3334-3337
[8] YANG Zong-Chang. A Law of Gravitation for Complex Networks[J]. Chin. Phys. Lett., 2009, 26(9): 3334-3337
[9] DUAN Wen-Qi, SUN Bo-Liang. Empirical Analysis and Modeling of the Global Economic System[J]. Chin. Phys. Lett., 2009, 26(9): 3334-3337
[10] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 3334-3337
[11] KE Jian-Hong, LIN Zhen-Quan, CHEN Xiao-Shuang. Monomer Adsorption-Desorption Processes[J]. Chin. Phys. Lett., 2009, 26(5): 3334-3337
[12] XU Hong, SHI Ding-Hua. Stability of the BA Network: a New Approach to Rigorous Proof[J]. Chin. Phys. Lett., 2009, 26(3): 3334-3337
[13] HONG Wei, HAN Xiao-Pu, ZHOU Tao, WANG Bing-Hong,. Heavy-Tailed Statistics in Short-Message Communication[J]. Chin. Phys. Lett., 2009, 26(2): 3334-3337
[14] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 3334-3337
[15] JIANG Shi-Mei, CAI Shi-Min, ZHOU Tao, , ZHOU Pei-Ling. Note on Two-Phase Phenomena in Financial Markets[J]. Chin. Phys. Lett., 2008, 25(6): 3334-3337
Viewed
Full text


Abstract