Chin. Phys. Lett.  2005, Vol. 22 Issue (8): 2002-2004    DOI:
Original Articles |
A Direct Comparison between Static and Dynamic Melting Temperature Determinations below 100GPa
SUN Yu-Huai1,3;HUANG Hai-Jun2;LIU Fu-Sheng1;YANG Mei-Xia1;JING Fu-Qian1,2
1Institute of High Temperature and High Pressure Physics, Southwest Jiaotong University, Chengdu 610031 2Laboratory for Shock Wave and Detonation Physics Research, Southwest Institute of Fluid Physics, Mianyang 621900 3Institute of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066
Cite this article:   
SUN Yu-Huai, HUANG Hai-Jun, LIU Fu-Sheng et al  2005 Chin. Phys. Lett. 22 2002-2004
Download: PDF(231KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A preliminary experiment of sound velocity measurements for porous iron with initial average density of 6.275g/cm3 has been performed at pressures below 100GPa, in order to clarify a long-standing problem that the static melting temperature Tm, mostly below 100GPa due to its technical limitations, is notably lower than the extrapolated melting data inferred from the shock wave experiments made above 200GPa, for the sake of making a direct comparison between the experimental static and dynamic melting temperatures in the same pressure region. With the lately proposed Hugoniot sound velocity data analysis technique [Chin. Phys. Lett. 22 (2005) 863], the results deduced from this Hugoniot sound velocity measurement is Tm=3200K at 87GPa and Tm=3080K at 80GPa, which are in good agreement with the two latest static data of Tm=3510K at 105GPa and Tm=2750K at 58GPa, which utilized modern improved double-side laser heating and in situ accurate x-ray diffraction techniques in experiments. It can be concluded that consensus Tm data would be obtained from static and shock wave experiments in the case that the recently improved techniques are adopted in investigations.
Keywords: 62.50.+p      64.70.Dv      64.10.+h      91.35.Ed     
Published: 01 August 2005
PACS:  62.50.+p  
  64.70.Dv  
  64.10.+h (General theory of equations of state and phase equilibria)  
  91.35.Ed (Structure of the Earth's interior below the upper mantle)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I8/02002
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Yu-Huai
HUANG Hai-Jun
LIU Fu-Sheng
YANG Mei-Xia
JING Fu-Qian
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 2002-2004
[2] ZHANG Shi-Liang, ZHANG Xin-Yu, WANG Lin-Min, QI Li, ZHANG Su-Hong, ZHU Yan, LIU Ri-Ping** . Voronoi Structural Evolution of Bulk Silicon upon Melting[J]. Chin. Phys. Lett., 2011, 28(6): 2002-2004
[3] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 2002-2004
[4] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 2002-2004
[5] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 2002-2004
[6] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 2002-2004
[7] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 2002-2004
[8] BAI Li-Gang, LIU Jing. Equation of State and Elastic Constants of Compressed fcc Cu[J]. Chin. Phys. Lett., 2010, 27(3): 2002-2004
[9] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 2002-2004
[10] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 2002-2004
[11] HU Jia-Wen, YU Yang-Xin. Prediction and Refinement of High-Order Virial Coefficients for a Hard-Sphere System[J]. Chin. Phys. Lett., 2009, 26(8): 2002-2004
[12] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 2002-2004
[13] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 2002-2004
[14] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 2002-2004
[15] QIAO Er-Wei, ZHENG Hai-Fei, XU Bei. Raman Scattering Spectroscopy of Phase Transition in n-Pentadecane under High Temperature and High Pressure[J]. Chin. Phys. Lett., 2009, 26(1): 2002-2004
Viewed
Full text


Abstract