Chin. Phys. Lett.  2005, Vol. 22 Issue (8): 1848-1851    DOI:
Original Articles |
Universal Form of Renormalizable Knots in Symbolic Dynamics
GAO Wen;PENG Shou-Li
Center for Nonlinear Complex Systems, Department of Physics, Yunnan University, Kunming 650091
Cite this article:   
GAO Wen, PENG Shou-Li 2005 Chin. Phys. Lett. 22 1848-1851
Download: PDF(234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The knot structure of three-dimensional flow has been constructed based on minimal braid assumption [Chin. Phys. Lett. 20(2003)1444]. Here we provide a new universal form of renormalizable knots. From this universal form an arbitrary renormalizable knot can be decomposed into a unique set of elementary templates.
Keywords: 05.45.Ac      02.10.Kn     
Published: 01 August 2005
PACS:  05.45.Ac (Low-dimensional chaos)  
  02.10.Kn (Knot theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I8/01848
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Wen
PENG Shou-Li
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1848-1851
[2] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 1848-1851
[3] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 1848-1851
[4] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1848-1851
[5] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 1848-1851
[6] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 1848-1851
[7] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 1848-1851
[8] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 1848-1851
[9] Gabriela A. Casas**, Paulo C. Rech*** . Numerical Study of a Three-Dimensional Hénon Map[J]. Chin. Phys. Lett., 2011, 28(1): 1848-1851
[10] XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Danièle, TAHA Abdel-Kaddous, CHARGE Pascal. Chaotic Dynamics in a Sine Square Map: High-Dimensional Case (N≥3)[J]. Chin. Phys. Lett., 2010, 27(8): 1848-1851
[11] BAO Bo-Cheng, XU Jian-Ping, LIU Zhong. Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit[J]. Chin. Phys. Lett., 2010, 27(7): 1848-1851
[12] JI Ying, BI Qin-Sheng. Spiking Behavior in Chua's Circuit[J]. Chin. Phys. Lett., 2010, 27(6): 1848-1851
[13] LI Fei, PAN Chang-Ning, ZHANG Dong-Xia, TANG Li-Qiang. Chaotic Dynamics of a Josephson Junction with Nonlinear Damping[J]. Chin. Phys. Lett., 2010, 27(5): 1848-1851
[14] ZHANG Gang, ZHANG Wei, LIU Zeng-Rong. Synchronization of Coupled Nonidentical Dynamical Systems[J]. Chin. Phys. Lett., 2010, 27(3): 1848-1851
[15] DONG Gao-Gao, ZHENG Song, TIAN Li-Xin, DU Rui-Jin,. Spectrum Analysis and Circuit Implementation of a New 3D Chaotic System with Novel Chaotic Attractors[J]. Chin. Phys. Lett., 2010, 27(2): 1848-1851
Viewed
Full text


Abstract