Chin. Phys. Lett.  2004, Vol. 21 Issue (6): 987-990    DOI:
Original Articles |
Connection Between Quantum-Classical Correspondence and Long-Range Correlations in Quantum Spectra
LI Xi-Guo1,2;SONG Jian-Jun2
1Centre of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 2Institute of Modern Physics, Chinese Academic of Sciences, Lanzhou 730000
Cite this article:   
LI Xi-Guo, SONG Jian-Jun 2004 Chin. Phys. Lett. 21 987-990
Download: PDF(283KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Berry-Tabor trace formula, a semiclassical quantization condition for the periodic orbits in a two-dimensional uncoupled oscillator system and the correspondence relation between the quantum levels and classical trajectories of the system have been studied in detail. Making use of the quantum-classical correspondence relation, it has been found that if a set of quantum levels corresponds to the periodic orbits with the same topology structure M (M1,M2), there will be long-range correlations among these quantum levels.


Keywords: 03.65.Sq      02.30.Ik      05.45.Mt     
Published: 01 June 2004
PACS:  03.65.Sq (Semiclassical theories and applications)  
  02.30.Ik (Integrable systems)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I6/0987
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xi-Guo
SONG Jian-Jun
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 987-990
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 987-990
[3] LIU Yuan,JIA Ya-Fei,LI Wei-Dong**. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential[J]. Chin. Phys. Lett., 2012, 29(4): 987-990
[4] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 987-990
[5] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 987-990
[6] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 987-990
[7] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 987-990
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 987-990
[9] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 987-990
[10] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 987-990
[11] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 987-990
[12] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 987-990
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 987-990
[14] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 987-990
[15] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 987-990
Viewed
Full text


Abstract