Chin. Phys. Lett.  2004, Vol. 21 Issue (6): 1013-1015    DOI:
Original Articles |
Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series
YIN Hua-Wei1;LU Wei-Ping2;WANG Peng-Ye1
1Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 2Physics School of Engineering and Physical Sciences, David Brewster Building, Heriot-Watt University, Edinburgh EH14 4AS, UK
Cite this article:   
YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye 2004 Chin. Phys. Lett. 21 1013-1015
Download: PDF(313KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study controlling chaos using time-delayed feedback control based on chaotic time series without prior knowledge of dynamical systems, and determine the optimal control parameters for stabilizing unstable periodic orbits with maximal stability.

Keywords: 05.45.+b      02.30.Ks      07.50.Ek     
Published: 01 June 2004
PACS:  05.45.+b  
  02.30.Ks (Delay and functional equations)  
  07.50.Ek (Circuits and circuit components)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I6/01013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Hua-Wei
LU Wei-Ping
WANG Peng-Ye
Related articles from Frontiers Journals
[1] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 1013-1015
[2] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 1013-1015
[3] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 1013-1015
[4] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 1013-1015
[5] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 1013-1015
[6] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 1013-1015
[7] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 1013-1015
[8] YAN Shi-Wei, , WANG Qi, XIE Bai-Song, ZHANG Feng-Shou,. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation[J]. Chin. Phys. Lett., 2007, 24(6): 1013-1015
[9] LI Ming, GAO Chun-Xiao, ZHANG Dong-Mei, HE Chun-Yuan, HAO Ai-Min, HUANG Xiao-Wei, YU Cui-Ling, LI Yan-Chun, LI Xiao-Dong, LIU Jing, ZOU Guang-Tian. Phase Transition of FeS in Terms of In-Situ Resistance Measurement[J]. Chin. Phys. Lett., 2007, 24(1): 1013-1015
[10] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 1013-1015
[11] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 1013-1015
[12] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 1013-1015
[13] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 1013-1015
[14] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 1013-1015
[15] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 1013-1015
Viewed
Full text


Abstract