Chin. Phys. Lett.  2004, Vol. 21 Issue (11): 2128-2131    DOI:
Original Articles |
Measure Synchronization of High-Cycle Islets in Coupled Hamiltonian Systems
CHEN Shao-Ying1,2;WANG Guang-Rui3;CHEN Shi-Gang3
1Department of Physics, Hulunbeier College, Hailaer 021008 2Graduate School of China Academy of Engineer Physics, PO Box 2101, Beijing 100088 3Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088
Cite this article:   
CHEN Shao-Ying, WANG Guang-Rui, CHEN Shi-Gang 2004 Chin. Phys. Lett. 21 2128-2131
Download: PDF(595KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Measure synchronization is a new phenomenon found in coupled Hamiltonian systems recently and it is interesting to understand its properties comprehensively. We discuss the measure synchronization of a coupled pair of standard maps in high period quasi-period orbits, and the measure synchronization transition is associated with the transition of coupled systems from quasi-periodicity to chaos. This behaviour is very different from that found by Hampton and Zanette [Phys. Rev. Lett. {\bf 83} (1999) 2179].
Keywords: 05.45.Xt      05.45.Pq      05.45.Jn     
Published: 01 November 2004
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Jn (High-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2004/V21/I11/02128
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Shao-Ying
WANG Guang-Rui
CHEN Shi-Gang
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 2128-2131
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 2128-2131
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2128-2131
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2128-2131
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 2128-2131
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 2128-2131
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 2128-2131
[8] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 2128-2131
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 2128-2131
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 2128-2131
[11] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 2128-2131
[12] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2128-2131
[13] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 2128-2131
[14] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 2128-2131
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 2128-2131
Viewed
Full text


Abstract