Chin. Phys. Lett.  2003, Vol. 20 Issue (7): 1006-1008    DOI:
Original Articles |
New Coherent Structures in the Generalized (2+1)-Dimensional Nizhnik-Novikov-Veselov System
ZHANG Jie-Fang1,2,3;MENG Jian-Ping1
1Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004 2Department of Mathematical Science, Loughborough University, Loughborough Leicestershire, LE11 3TU, UK 3Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
ZHANG Jie-Fang, MENG Jian-Ping 2003 Chin. Phys. Lett. 20 1006-1008
Download: PDF(752KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In high dimensions there are abundant coherent soliton excitations. From the known variable separation solutions for the generalized (2+1)-dimensional Nizhnik-Novikov-Veselov system, two kinds of new coherent structures in this system are obtained. Some interesting novel features of these structures are revealed.



Keywords: 05.45.Yv      03.40.-t      03.65.Ge     
Published: 01 July 2003
PACS:  05.45.Yv (Solitons)  
  03.40.-t  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I7/01006
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jie-Fang
MENG Jian-Ping
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[7] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[8] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1006-1008
[9] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1006-1008
[10] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1006-1008
[11] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 1006-1008
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 1006-1008
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1006-1008
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 1006-1008
[15] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1006-1008
Viewed
Full text


Abstract