Chin. Phys. Lett.  2003, Vol. 20 Issue (7): 1009-1012    DOI:
Original Articles |
Calculation of Free Energy of the Integrable Landau-Lifshitz Model
CAI Cong-Zhong1,2;WANG Wan-Lu1;CHEN Yu-Zong1,2
1Department of Applied Physics, Chongqing University, Chongqing 400044 2Department of Computational Science, National University of Singapore, Singapore 117543
Cite this article:   
CAI Cong-Zhong, WANG Wan-Lu, CHEN Yu-Zong 2003 Chin. Phys. Lett. 20 1009-1012
Download: PDF(218KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generalized Bethe-ansatz method of thermodynamic analysis of integrable systems was employed to compute the free energy of a classical integrable model, i.e., the Landau-Lifshitz model. Using the action-angle variables of the model and by imposing a periodic boundary condition, we derive a phase-shifted density of states for the excitations of the system. The free energy, in the thermodynamic limit, can be expressed analytic in terms of two coupled nonlinear integral equations of the finite temperature excited energy for effective phonons and kinks (antikinks). We solve these equations iteratively for a special case that the model is in the limit of anisotropic strong yz coupling.

Keywords: 05.70.Ce      05.45.Yv      05.90.+m      05.45.-a      02.70.Pt     
Published: 01 July 2003
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  05.45.Yv (Solitons)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
  02.70.Pt (Boundary-integral methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2003/V20/I7/01009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Cong-Zhong
WANG Wan-Lu
CHEN Yu-Zong
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[5] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[6] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[7] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[8] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[9] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[10] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[11] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[12] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 1009-1012
[13] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 1009-1012
[14] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1009-1012
[15] GE Hong-Xia,YU Jian,LO Siu-Ming**. A Control Method for Congested Traffic in the Car-Following Model[J]. Chin. Phys. Lett., 2012, 29(5): 1009-1012
Viewed
Full text


Abstract