Chin. Phys. Lett.  2002, Vol. 19 Issue (7): 904-907    DOI:
Original Articles |
Phase Space Prediction Model Based on the Chaotic Attractor
LI Ke-Ping1,2;CHEN Tian-Lun2
1Institute of Systems Science, Northern Jiaotong University, Beijing 100044 2Department of Physics, Nankai University, Tianjin 300071
Cite this article:   
LI Ke-Ping, CHEN Tian-Lun 2002 Chin. Phys. Lett. 19 904-907
Download: PDF(328KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new prediction technique is proposed for chaotic time series. The usefulness of the technique is that it removes some false neighbouring points which are not suitable for the local estimation of the dynamics systems. We use a feedforward neural network to approximate the local dominant Lyapunov exponent, and choose the neighbouring points by the exponent. The model is tested for the convection amplitude of the Lorenz model, and the results indicate that this prediction technique can improve the prediction of chaotic time series.
Keywords: 05.45.+b     
Published: 01 July 2002
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I7/0904
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ke-Ping
CHEN Tian-Lun
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 904-907
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 904-907
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 904-907
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 904-907
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 904-907
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 904-907
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 904-907
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 904-907
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 904-907
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 904-907
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 904-907
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 904-907
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 904-907
[14] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 904-907
[15] LIN Sheng-Lu, ZHANG Qiu-Ju, ZHAO Ke, SONG Xiao-Hong, ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2002, 19(1): 904-907
Viewed
Full text


Abstract