Chin. Phys. Lett.  2001, Vol. 18 Issue (2): 157-159    DOI:
Original Articles |
Classical Coset Hamiltonian for the Electronic Motion and its Application to Anderson Localization and Hammett Equation
XING Guan;WU Guo-Zhen
Molecular and Nano Sciences Laboratory of Educational Ministry, Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
XING Guan, WU Guo-Zhen 2001 Chin. Phys. Lett. 18 157-159
Download: PDF(365KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, the dynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed - an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings of this algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.
Keywords: 02.20.Sv      72.10.-d     
Published: 01 February 2001
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I2/0157
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XING Guan
WU Guo-Zhen
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 157-159
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 157-159
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 157-159
[4] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 157-159
[5] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 157-159
[6] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 157-159
[7] SHI Feng, , ZHANG Yi-Jun, CHENG Hong-Chang, ZHAO Jing, XIONG Ya-Juan, CHANG Ben-Kang** . Theoretical Revision and Experimental Comparison of Quantum Yield for Transmission-Mode GaAlAs/GaAs Photocathodes[J]. Chin. Phys. Lett., 2011, 28(4): 157-159
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 157-159
[9] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 157-159
[10] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 157-159
[11] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 157-159
[12] K. Fakhar**, A. H. Kara. An Analysis of the Invariance and Conservation Laws of Some Classes of Nonlinear Ostrovsky Equations and Related Systems[J]. Chin. Phys. Lett., 2011, 28(1): 157-159
[13] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 157-159
[14] TAO Si-Xing, XIA Tie-Cheng. Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy[J]. Chin. Phys. Lett., 2010, 27(4): 157-159
[15] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 157-159
Viewed
Full text


Abstract