Chin. Phys. Lett.  2001, Vol. 18 Issue (2): 160-162    DOI:
Original Articles |
Two Theorems on Calculating the Relative Entropy of Entanglement
WU Sheng-Jun1;WU Qiang2;ZHANG Yong-De1
1Laboratory of Quantum Communication and Quantum Computation and Department of Modern Physics, University of Science and Technology of China, Hefei 230027 2Department of Astronomy and Applied Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
WU Sheng-Jun, WU Qiang, ZHANG Yong-De 2001 Chin. Phys. Lett. 18 160-162
Download: PDF(197KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present two theorems on calculating the relative entropy of entanglement. Theorem 1 is an extension of Vedral and Plenio's theorem (Phys. Rev. A 57 (1998) 1619) for pure states, which is useful for calculating the relative entropy of entanglement for all pure states as well as for a class of mixed states. Theorem 2 gives the relative entropy of entanglement for any bipartite state whose tripartite purification has two separable reduced bipartite states.
Keywords: 03.65.Bz      03.67.-a      65.50.+m     
Published: 01 February 2001
PACS:  03.65.Bz  
  03.67.-a (Quantum information)  
  65.50.+m  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I2/0160
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Sheng-Jun
WU Qiang
ZHANG Yong-De
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 160-162
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 160-162
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 160-162
[4] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 160-162
[5] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 160-162
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 160-162
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 160-162
[8] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 160-162
[9] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 160-162
[10] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 160-162
[11] JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong, LIU Liang** . An Optimum Method for a Grooved 2D Planar Ion Trap Design[J]. Chin. Phys. Lett., 2011, 28(7): 160-162
[12] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 160-162
[13] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 160-162
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 160-162
[15] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 160-162
Viewed
Full text


Abstract