Chin. Phys. Lett.  2001, Vol. 18 Issue (12): 1575-1577    DOI:
Original Articles |
Optimum Metallic-Bond Scheme: A Quantitative Analysis of Mass Spectra of Sodium Clusters
SU Chang-Rong1;LI Jia-Ming1,2
1Departpment of Physics, Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084 2Institute of Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
SU Chang-Rong, LI Jia-Ming 2001 Chin. Phys. Lett. 18 1575-1577
Download: PDF(315KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the results of the optimum metallic-bond scheme for
sodium clusters, we present a quantitative analysis of the detailed features of the mass spectra of sodium clusters. We find that, in the generation of sodium clusters with various abundances, the quasi-steady processes through adding or losing a sodium atom dominate, and the quasi-steady processes through adding or losing a sodium dimer are also important to understand the detailed features of mass spectra for small clusters.
Keywords: 33.15.Ta      71.15.-m      71.20.Dg     
Published: 01 December 2001
PACS:  33.15.Ta (Mass spectra)  
  71.15.-m (Methods of electronic structure calculations)  
  71.20.Dg (Alkali and alkaline earth metals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I12/01575
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Chang-Rong
LI Jia-Ming
Related articles from Frontiers Journals
[1] WANG Wen-Li, XU Xin-Ye** . Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp[J]. Chin. Phys. Lett., 2011, 28(3): 1575-1577
[2] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 1575-1577
[3] MANG Chao-Yong, WU Ke-Chen. Maximal Coordinator Number of Potassium, Rubidium, Caesium and Francium Ions in Gaseous Water[J]. Chin. Phys. Lett., 2010, 27(8): 1575-1577
[4] LIU Hong-Sheng, FANG Xiao-Yong, SONG Wei-Li, HOU Zhi-Ling, LU Ran, YUAN Jie, CAO Mao-Sheng. Modification of Band Gap of -SiC by N-Doping[J]. Chin. Phys. Lett., 2009, 26(6): 1575-1577
[5] CHEN Jing-Zhe, CHEN Xing, LIU Guang-Hua, HAN Ru-Shan. Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes[J]. Chin. Phys. Lett., 2008, 25(8): 1575-1577
[6] YANG Xi-Feng, LIU Zhao-Lin, CHEN Ping-Ping, CHEN Xiao-Shuang, LI Tian-Xin, LU Wei. Broadening of Photoluminescence by Nonhomogeneous Size Distribution of Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(8): 1575-1577
[7] WANG Xi-En, LIU Ting-Yu, ZHANG Qi-Ren, ZHANG Hai-Yan, SONG Min, GUOXiao-Feng, YIN Ji-Gang. First Principles Study on Electronic Structures of Mn2+:CdMoO4 Crystals[J]. Chin. Phys. Lett., 2008, 25(3): 1575-1577
[8] CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains[J]. Chin. Phys. Lett., 2008, 25(3): 1575-1577
[9] REN Ping, DENG Hui-Yong, ZHANG Jun-Xi, DAI Ning. Ab Initio Study of Structural and Electronic Properties of Sodium Bromide[J]. Chin. Phys. Lett., 2008, 25(1): 1575-1577
[10] XIA Zhu-Hong, CHEN Cheng-Chu, HSU Yen-Chu. An Effective Method of Producing Small Neutral Carbon Clusters[J]. Chin. Phys. Lett., 2007, 24(7): 1575-1577
[11] CHEN Jian-Yu, ZHANG Qi-Ren, LIU Ting-Yu, SHAO Ze-Xu, PU Chun-Ying. Electronic Structures of PbMoO4 Crystals with F-Type Colour Centres[J]. Chin. Phys. Lett., 2007, 24(6): 1575-1577
[12] MA Chun-Lan, PAN Tao. Electronic Structures of the Filled Tetrahedral Semiconductor Li3AlN2[J]. Chin. Phys. Lett., 2006, 23(1): 1575-1577
[13] ZHANG Ying, GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity[J]. Chin. Phys. Lett., 2005, 22(2): 1575-1577
[14] XU Tian, CAO Zhuang-Qi, OU Yong-Cheng, ZHU Guo-Long. Accurate Bound-State Spectra for Hydrogenic Donors in GaAs--(Ga, Al)As Quantum Dots[J]. Chin. Phys. Lett., 2005, 22(11): 1575-1577
[15] TANG Shao-Qiang, ZHANG Da-Peng. Pseudo-Hydrodynamic Approximation for Transient Computation of Energy-Transport Models in Semiconductors[J]. Chin. Phys. Lett., 2005, 22(10): 1575-1577
Viewed
Full text


Abstract