Chin. Phys. Lett.  2001, Vol. 18 Issue (12): 1550-1553    DOI:
Original Articles |
Universal Behaviour on the Break-up of the Spiral Mean Torus
ZHOU Ji-Lin1;Bambi HU2;SUN Yi-Sui1
1Department of Astronomy and Center of Astronomy and Astrophysics in Eastern China, Nanjing University, Nanjing 210093 2Department of Physics and Center for Nonlinear Studies, Hong Kong Baptist University, Hong Kong
Cite this article:   
ZHOU Ji-Lin, Bambi HU, SUN Yi-Sui 2001 Chin. Phys. Lett. 18 1550-1553
Download: PDF(534KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study numerically the critical behaviour during the break-up of the spiral mean torus in a four-dimensional symplectic map. At each point of the paramter space, the stability indices of a serial of periodic orbits are calculated with their winding numbers approaching the spiral mean torus. The critical values of the parameters when the torus breaks are determined by the criterion that the variance of the distribution on the indices reaches a minimum. Some evidence are revealed on the possible existence of a univsersal distribution on the stability indices of the periodic orbits at the critical. This confirms the picture given by the approximate renormalization theory of the Hamiltonian systems with three degrees of freedom.
Keywords: 05.45.+b      02.30.Hq      47.20.Ky     
Published: 01 December 2001
PACS:  05.45.+b  
  02.30.Hq (Ordinary differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I12/01550
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ji-Lin
Bambi HU
SUN Yi-Sui
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1550-1553
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1550-1553
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 1550-1553
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 1550-1553
[5] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 1550-1553
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 1550-1553
[7] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 1550-1553
[8] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 1550-1553
[9] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 1550-1553
[10] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 1550-1553
[11] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 1550-1553
[12] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 1550-1553
[13] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 1550-1553
[14] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 1550-1553
[15] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 1550-1553
Viewed
Full text


Abstract