Chin. Phys. Lett.  2001, Vol. 18 Issue (1): 80-81    DOI:
Original Articles |
Antitrace Maps and Light Transmission Coefficients for Generalized Fibonacci Multilayers
WANG Xiao-Guang;PAN Shao-Hua;YANG Guo-Zhen
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
WANG Xiao-Guang, PAN Shao-Hua, YANG Guo-Zhen 2001 Chin. Phys. Lett. 18 80-81
Download: PDF(198KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the antitrace map method, we investigate the light transmission for generalized Fibonacci multilayers. Analytical results are obtained for transmission coefficients in some special cases. We find that the transmission coefficients possess a two-cycle or six-cycle property. The cycle properties of the trace and antitrace are also obtained.
Keywords: 61.44.Br      05.45.-a      42.25.Dd      71.23.Ft     
Published: 01 January 2001
PACS:  61.44.Br (Quasicrystals)  
  05.45.-a (Nonlinear dynamics and chaos)  
  42.25.Dd (Wave propagation in random media)  
  71.23.Ft (Quasicrystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2001/V18/I1/080
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Guang
PAN Shao-Hua
YANG Guo-Zhen
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 80-81
[7] CHEN Zhi-Wei,FU Xiu-Jun**. Quasicrystalline Phase with Eighteen-Fold Diffraction Symmetry in Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2012, 29(5): 80-81
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 80-81
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 80-81
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 80-81
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 80-81
[12] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 80-81
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 80-81
[14] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 80-81
[15] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 80-81
Viewed
Full text


Abstract