Chin. Phys. Lett.  2000, Vol. 17 Issue (6): 398-400    DOI:
Original Articles |
A New Feature in Some Quasi-discontinuous Systems
WU Shun-Guang1,2;HE Da-Ren1
1Complexity Science Center, Yangzhou University, Yangzhou 225002 2Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875
Cite this article:   
WU Shun-Guang, HE Da-Ren 2000 Chin. Phys. Lett. 17 398-400
Download: PDF(235KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Many systems can display a very short, rapid changing stage (quasi-discontinuous region) inside a relatively very long and slowly changing process. A quantitative definition for the “quasi-discontinuity” in these systems has been introduced. We have shown by a simplified model that extra-large Feigenbaum constants can be found inside some period-doubling cascades due to the quasi-discontinuity. As an example, this phenomenon has also been observed in Rose-Hindmash model describing neuron activities.
Keywords: 05.45.+b     
Published: 01 June 2000
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I6/0398
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Shun-Guang
HE Da-Ren
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 398-400
[2] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 398-400
[3] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 398-400
[4] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 398-400
[5] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 398-400
[6] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 398-400
[7] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 398-400
[8] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 398-400
[9] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 398-400
[10] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 398-400
[11] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 398-400
[12] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 398-400
[13] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 398-400
[14] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 398-400
[15] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 398-400
Viewed
Full text


Abstract