Chin. Phys. Lett.  2000, Vol. 17 Issue (6): 393-395    DOI:
Original Articles |
Antiparticle in the Light of Einstein-Podolsky-Rosen Paradox and Klein Paradox
NI Guang-Jiong1;GUAN Hong2;ZHOU Wei-Min3;YAN Jun3
1Department of Physics, Fudan University, Shanghai 200433 2Department of Physics, Zhongshan University, Guangzhou 510275 3Department of Physics, New York University, New York, NY 10003, USA
Cite this article:   
NI Guang-Jiong, GUAN Hong, ZHOU Wei-Min et al  2000 Chin. Phys. Lett. 17 393-395
Download: PDF(254KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The original version of Einstein-Podolsky-Rosen paradox and the Klein paradox of Klein-Gordon equation are discussed to show the necessity of existence of antiparticle with its wave function being fixed unambiguously. No concept of “hole” is needed.
Keywords: 03.65.-w      03.65.Bz      03.65.Pm     
Published: 01 June 2000
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Bz  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I6/0393
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NI Guang-Jiong
GUAN Hong
ZHOU Wei-Min
YAN Jun
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 393-395
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 393-395
[3] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 393-395
[4] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 393-395
[5] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 393-395
[6] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 393-395
[7] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 393-395
[8] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 393-395
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 393-395
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 393-395
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 393-395
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 393-395
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 393-395
[14] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 393-395
[15] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 393-395
Viewed
Full text


Abstract