Chin. Phys. Lett.  2000, Vol. 17 Issue (3): 180-181    DOI:
Original Articles |
Symmetry Breaking in Finite Volume
LIU Chuan
Department of Physics, Peking University, Beijing 100871
Cite this article:   
LIU Chuan 2000 Chin. Phys. Lett. 17 180-181
Download: PDF(212KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spontaneous symmetry breaking is a cooperative phenomenon for systems with infinitely many degrees of freedom and it plays an essential role in quantum field theories. Lattice O(N) model is studied within the Hamiltonian approach using an adiabatic approximation. It is shown that the low-lying spectrum of the system in the broken phase can be understood by using the adiabatic, or Born-Oppenheimer approximation, which turns out to become an expansion in the inverse power of volume. In the infinite volume limit, the symmetry is broken while in the finite volume the slow rotation of the zero-momentum mode restores the symmetry and gives rise to the rotator spectrum, which has been observed in realistic Monte Carlo simulations.


Keywords: 11.15.Ha      11.10.Ef      11.30.Qc     
Published: 01 March 2000
PACS:  11.15.Ha (Lattice gauge theory)  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
  11.30.Qc (Spontaneous and radiative symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2000/V17/I3/0180
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Chuan
Related articles from Frontiers Journals
[1] CHANG Hao-Ran**,WANG Jing-Rong,WANG Jing. Influence of Fermion Velocity Renormalization on Dynamical Mass Generation in QED3[J]. Chin. Phys. Lett., 2012, 29(5): 180-181
[2] FU Zi-Wen** . Lattice QCD Study of the σ Meson[J]. Chin. Phys. Lett., 2011, 28(8): 180-181
[3] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 180-181
[4] ZHOU Yu-Qing**, YANG Yong-Hong . Peak of Chiral Susceptibility and Chiral Phase Transition in QED3[J]. Chin. Phys. Lett., 2011, 28(4): 180-181
[5] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 180-181
[6] WU Liang-Kai. Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential[J]. Chin. Phys. Lett., 2010, 27(2): 180-181
[7] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 180-181
[8] YE Zheng, XIE Zheng, MA Yu-Jie. Numerical Simulation of Electromagnetic Waves Scattering by Discrete Exterior Calculus[J]. Chin. Phys. Lett., 2009, 26(8): 180-181
[9] ZHANG Yan-Bin, SUN Wei-Min, LÜ, Xiao-Fu, ZONG Hong-Shi,. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator[J]. Chin. Phys. Lett., 2009, 26(8): 180-181
[10] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 180-181
[11] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 180-181
[12] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 180-181
[13] WU Hong-Tu, HUANG Chao-Guang, GUO Han-Ying. From the Complete Yang Model to Snyder's Model, de Sitter Special Relativity and Their Duality[J]. Chin. Phys. Lett., 2008, 25(8): 180-181
[14] HU Fei, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Calculation of Particle-Number Susceptibility of QED3 at Finite Temperature[J]. Chin. Phys. Lett., 2008, 25(8): 180-181
[15] WANG Xiao-Ming, ZHOU Bang-Rong. Complete Gluonic Phase in Two-Flavour Colour Superconductivity[J]. Chin. Phys. Lett., 2008, 25(4): 180-181
Viewed
Full text


Abstract