Chin. Phys. Lett.  1998, Vol. 15 Issue (7): 477-479    DOI:
Original Articles |
Adaptive Control of a Chaotic System with Delay
TIAN Yu-chu
National Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University, Hangzhou 310027
Cite this article:   
TIAN Yu-chu 1998 Chin. Phys. Lett. 15 477-479
Download: PDF(255KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A model-reference adaptive control strategy is proposed for a delay chaotic system with known or unknown parameters. Theoretical analysis and numerical simulations show that the controlled system state can track an arbitrarily given reference trajectory that may be an equilibrium point, a periodic orbit or a chaotic orbit.
Keywords: 05.45.+b      02.30.Ks      07.05.Dz     
Published: 01 July 1998
PACS:  05.45.+b  
  02.30.Ks (Delay and functional equations)  
  07.05.Dz (Control systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I7/0477
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Yu-chu
Related articles from Frontiers Journals
[1] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 477-479
[2] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 477-479
[3] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 477-479
[4] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 477-479
[5] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 477-479
[6] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 477-479
[7] MIAO Qing-Ying, FANG Jian-An, TANG Yang, DONG Ai-Hua. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay[J]. Chin. Phys. Lett., 2009, 26(5): 477-479
[8] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 477-479
[9] YAN Shi-Wei, , WANG Qi, XIE Bai-Song, ZHANG Feng-Shou,. Oscillatory Activities in Regulatory Biological Networks and Hopf Bifurcation[J]. Chin. Phys. Lett., 2007, 24(6): 477-479
[10] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 477-479
[11] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 477-479
[12] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 477-479
[13] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 477-479
[14] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 477-479
[15] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 477-479
Viewed
Full text


Abstract