Chin. Phys. Lett.  1998, Vol. 15 Issue (7): 472-474    DOI:
Original Articles |
Bound States of the Perturbed Schrödinger Systems
HAI Wen-hua
CCAST (World Laboratory), P. O. Box 8730, Beijing 100080, and Department of Physics, Hunan Normal University, Changsha 410081
Cite this article:   
HAI Wen-hua 1998 Chin. Phys. Lett. 15 472-474
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A bound state of the Schrödinger system is disturbed by an additional potential. It is shown that the system is still in a bound state if and only if its energy correction is restricted to the corresponding value. This infers some previous series solutions in quantum mechanics to be unbound states for the order i > 1 of perturbation. The corrected bound states of the system are given and their physical meaning is discussed simply. Application of the method to Stark effect reveals its advantage for researches of quantum chaos.

Keywords: 03.65.Bz      03.65.Ge      31.15.+q     
Published: 01 July 1998
PACS:  03.65.Bz  
  03.65.Ge (Solutions of wave equations: bound states)  
  31.15.+q  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I7/0472
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAI Wen-hua
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 472-474
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 472-474
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 472-474
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 472-474
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 472-474
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 472-474
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 472-474
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 472-474
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 472-474
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 472-474
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 472-474
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 472-474
[13] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 472-474
[14] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 472-474
[15] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 472-474
Viewed
Full text


Abstract