Chin. Phys. Lett.  1998, Vol. 15 Issue (7): 469-471    DOI:
Original Articles |
Two-Parameter Correlated Negative Binomial State in Two-Mode Fock Space
FAN Hong-yi;PAN Xiao-yin;CHEN Bo-zhan
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
FAN Hong-yi, PAN Xiao-yin, CHEN Bo-zhan 1998 Chin. Phys. Lett. 15 469-471
Download: PDF(177KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A kind of two-parameter correlated negative binomial state is constructed and analysed from the point of view of quantum optics theory in two-mode Fock space. By choosing a suitable two-mode correlated Holstein-Primakoff-analogue transformation, the state can be identified as a type of correlated SU (1,1) coherent state. The possible-physical uses of the state are also pointed out.
Keywords: 02.10.Nj      03.20.+i      05.30.-d     
Published: 01 July 1998
PACS:  02.10.Nj  
  03.20.+i  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1998/V15/I7/0469
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FAN Hong-yi
PAN Xiao-yin
CHEN Bo-zhan
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 469-471
[2] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 469-471
[3] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 469-471
[4] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 469-471
[5] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 469-471
[6] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 469-471
[7] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 469-471
[8] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 469-471
[9] AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan. Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle[J]. Chin. Phys. Lett., 2008, 25(9): 469-471
[10] ZHENG Shi-Wang, XIE Jia-Fang, CHEN Wen-Cong. A New Conserved Quantity Corresponding to Mei Symmetry of Tzenoff Equations for Nonholonomic Systems[J]. Chin. Phys. Lett., 2008, 25(3): 469-471
[11] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 469-471
[12] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 469-471
[13] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 469-471
[14] ZHU Kun-Yan, TAN Lei, GAO Xiang, WANG Daw-Wei. Quantum Fluids of Self-Assembled Chains of Polar Molecules at Finite Temperature[J]. Chin. Phys. Lett., 2008, 25(1): 469-471
[15] ZHENG Shi-Wang, XIE Jia-Fang, ZHANG Qing-Hua. Mei Symmetry and New Conserved Quantity of Tzenoff Equations for Holonomic Systems[J]. Chin. Phys. Lett., 2007, 24(8): 469-471
Viewed
Full text


Abstract