Chin. Phys. Lett.  1993, Vol. 10 Issue (5): 261-264    DOI:
Original Articles |
Lee’s Theorem in η-ξ Spacetime
GUI Yuanxing
International Centre for Materials Physics, Academia Sinica, Shenyang 110015 Department of Physics, Dalian University of Technology, Dalian 116023 (mailing address)
Cite this article:   
GUI Yuanxing 1993 Chin. Phys. Lett. 10 261-264
Download: PDF(160KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lee’s theorem in η-ξ spacetime is discussed. For massless free scalar field, Lee’s theorem is derived from thermal Bogoliubov transformation in η-ξ field theory. For scarlar fields with an arbitrary interaction in η-ξ spacetime, Lee’s theorem is proven by Feynman path-integral method.

Keywords: 03.70.+k      05.30.-d      11.10.–z     
Published: 01 May 1993
PACS:  03.70.+k (Theory of quantized fields)  
  05.30.-d (Quantum statistical mechanics)  
  11.10.–z  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1993/V10/I5/0261
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUI Yuanxing
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 261-264
[2] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 261-264
[3] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 261-264
[4] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 261-264
[5] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 261-264
[6] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 261-264
[7] CHENG Hong-Bo. The Casimir Force between Parallel Plates in Randall--Sundrum I Model[J]. Chin. Phys. Lett., 2010, 27(3): 261-264
[8] GENG Zhen-Duo, JIA Ning, ZHAO Xu, XIA Tian-Yu, JING Hui. Adiabatic Fidelity of Coherent Atom-Heteronuclear Molecule Conversion[J]. Chin. Phys. Lett., 2010, 27(3): 261-264
[9] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 261-264
[10] XIONG Ai-Min, CHEN Xiao-Song. Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions[J]. Chin. Phys. Lett., 2009, 26(6): 261-264
[11] ZHU Zhi-Ying, YU Hong-Wei. Accelerated Multi-Level Atoms in an Electromagnetic Vacuum and Fulling--Davies--Unruh Effect[J]. Chin. Phys. Lett., 2008, 25(5): 261-264
[12] JING Hui. Generation of Coherent Trimers from Bose-Condensed Atoms via a Generalized Stimulated Raman Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(3): 261-264
[13] JING Hui, GENG Zhen-Duo. Efimov Superchemistry: Quantum Dynamical Theory for Coherent Atom--Trimer Conversion in a Repulsive Atomic Bose--Einstein Condensate[J]. Chin. Phys. Lett., 2008, 25(3): 261-264
[14] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 261-264
[15] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 261-264
Viewed
Full text


Abstract