Chin. Phys. Lett.  1992, Vol. 9 Issue (3): 151-154    DOI:
Original Articles |
Soliton and Soliton-Pair as the Intrinsic Phonon Localized Modes in an Anharmonic Monoatomic Chain
HUANG Guoxiang;LI Hongfang;DAI Xianxi
Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
HUANG Guoxiang, LI Hongfang, DAI Xianxi 1992 Chin. Phys. Lett. 9 151-154
Download: PDF(178KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the use of coherent-state method, a quantum approach for the intrinsic phonon localized modes in an anharmonic monoatomic chain is given. It is shown that the envelope soliton with zerogroup velocity can exist in the lattice and that the frequency of carrier wave is above the top of the frequency band. A new type of the intrinsic phonon localized mode which we call the soliton-pair intrinsic localized mode in the chain is also reported.
Keywords: 63.20.Ry      63.20.Pw     
Published: 01 March 1992
PACS:  63.20.Ry (Anharmonic lattice modes)  
  63.20.Pw (Localized modes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1992/V9/I3/0151
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Guoxiang
LI Hongfang
DAI Xianxi
Related articles from Frontiers Journals
[1] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J]. Chin. Phys. Lett., 2010, 27(2): 151-154
[2] CUI Wei-Na, ZHU Yong-Yuan**, LI Hong-Xia, LIU Su-Mei. (2+1)-Dimensional Envelope Solitons in Nonlinear Magnetic Metamaterials[J]. Chin. Phys. Lett., 2010, 27(11): 151-154
[3] WANG Xin-Jun, LIU Jing-Feng, LUO Yong-Feng, LI Shui. The Influence of Cap and Defect Layer on Interface Optical-Phonon Modes in Finite Superlattices[J]. Chin. Phys. Lett., 2010, 27(1): 151-154
[4] LIAO Shu-Zhi, WANG Xiao-Li, ZHU Xiang-Ping, ZHANG Chun, OUYANG Yi-Fang, ZHANG Bang-Wei,. The MAEAM Model and Anharmonic Theory for the Bulk Modulus of Al Metal[J]. Chin. Phys. Lett., 2009, 26(8): 151-154
[5] XU Quan, QIANG Tian. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice[J]. Chin. Phys. Lett., 2009, 26(7): 151-154
[6] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 151-154
[7] XU Quan, TIAN Qiang. On Some Classes of New Solutions of Continuous β-FPU Chain[J]. Chin. Phys. Lett., 2008, 25(7): 151-154
[8] XU Quan, TIAN Qiang. Two-Dimensional Discrete Gap Breathers in a Two-Dimensional Diatomic β Fermi--Pasta--Ulam Lattice[J]. Chin. Phys. Lett., 2008, 25(10): 151-154
[9] XU Quan, TIAN Qiang. Existence and Stability of Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(8): 151-154
[10] XU Quan, TIAN Qiang. Multi-site Compact-Like Discrete Breather in Discrete One-Dimensional Monatomic Chains[J]. Chin. Phys. Lett., 2007, 24(12): 151-154
[11] XU Quan, TIAN Qiang. Existence and Stability of Two-Dimensional Compact-Like Discrete Breathers in Discrete Two-Dimensional Monatomic Square Lattices[J]. Chin. Phys. Lett., 2007, 24(12): 151-154
[12] KENZO Yamaguchi, TOMOHIRO Inoue, MASAMITSU Fujii, MASANOBU Haraguchi, TOSHIHIRO Okamoto, MASUO Fukui, SHU Seki, SEIICHI Tagawa. Electric Field Enhancement of Nano Gap of Silver Prisms[J]. Chin. Phys. Lett., 2007, 24(10): 151-154
[13] WEN Zhen-Ying, ZHAO Hong, WANG Shun-Jin, ZHANG Xiu-Ming. Effect of Nonlinearity on Scattering Dynamics of Solitary Waves[J]. Chin. Phys. Lett., 2006, 23(8): 151-154
[14] XU Hai-Qing, TANG Yi. Parametrically Driven Solitons in a Chain of Nonlinear Coupled Pendula with an Impurity[J]. Chin. Phys. Lett., 2006, 23(6): 151-154
[15] GU Huai-Qiang, WANG Zhi-Cheng, JIN Kang, TAN Lei. Bloch Oscillations of Two-Component Bose--Einstein Condensates in Optical Lattices[J]. Chin. Phys. Lett., 2006, 23(3): 151-154
Viewed
Full text


Abstract