CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Blistering and Helium Retention of Tungsten and 5% Chromium Doped Tungsten Exposed to 60keV Helium Ions Irradiation |
Shu-qin Lv1, Wen-jia Han1, Jian-gang Yu1, Hang Zhou1, Mi Liu1,2, Chang-an Chen3, Kai-gui Zhu1,2** |
1Department of Physics, Beihang University, Beijing 100191 2Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191 3Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907
|
|
Cite this article: |
Shu-qin Lv, Wen-jia Han, Jian-gang Yu et al 2018 Chin. Phys. Lett. 35 126101 |
|
|
Abstract Pure tungsten (W) and chromium doped W (W-5%Cr) are prepared by powder metallurgy. The microstructure, blistering and helium retention are investigated by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal desorption spectroscopy (TDS). These results show that the average size and density of helium blisters on the surface of pure W are much larger than those on the W-5%Cr alloy. Vacancy-impurity pairs can reduce the migration coefficients of vacancy and vacancy-helium complexes, and Cr may play a role of such an impurity. Moreover, the TDS result shows that the highest desorption peak moves to higher temperature, which is attributed to the He$_{m}$Cr$_{k}$V$_{n}$ complexes in the W-Cr alloy. In addition, the helium retention is found to be higher in W than in W-5%Cr.
|
|
Received: 18 July 2018
Published: 23 November 2018
|
|
PACS: |
61.66.Dk
|
(Alloys )
|
|
61.05.-a
|
(Techniques for structure determination)
|
|
65.90.+i
|
(Other topics in thermal properties of condensed matter)
|
|
28.52.Fa
|
(Materials)
|
|
52.40.Hf
|
(Plasma-material interactions; boundary layer effects)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51471015 and 11675010, and the National Magnetic Confinement Fusion Program under Grant No 2015GB109003. |
|
|
[1] | Zenobia S J, Garrison L M and Kulcinski G L 2012 J. Nucl. Mater. 425 83 | [2] | Ueda Y, Tobita K and Katoh Y 2003 J. Nucl. Mater. 313-316 32 | [3] | Rieth M, Boutard J L, Dudarev S L et al 2011 J. Nucl. Mater. 417 463 | [4] | Han W, Yu J, Chen Z, Lu G H and Zhu K G 2017 Nucl. Fusion 57 | [5] | Maisonnier D, Cook I, Pierre S and Lorenzo B 2006 Fusion Eng. Des. 81 1123 | [6] | Maisonnier D, Cook I, Pierre S and Lorenzo B 2005 Fusion Eng. Des. 75 1173 | [7] | Johnson D F and Carter E A 2010 J. Mater. Res. 25 315 | [8] | Wurster S, Gludovatz B, Hoffmann A and Pippan R 2011 J. Nucl. Mater. 413 166 | [9] | Arshad K, Yuan Y, Cheng L, Wang J, Zhou Z J, Temmerman G D and Lu G H 2016 Fusion Eng. Des. 107 25 | [10] | Loewenhoff T, Bürger A, Linke J, Pintsuk G, Schmidt A, Singheiser L and Thomser C 2011 Phys. Scr. T145 014057 | [11] | Textorteam T, Coenen J W and Philipps V 2011 Nucl. Fusion 51 113020 | [12] | Zucchetti M and Merola M 1996 J. Nucl. Mater. 233 1486 | [13] | Rocco P and Zucchetti M 1991 Fusion Eng. Des. 15 235 | [14] | Rocco P and Zucchetti M 1994 J. Nucl. Mater. 212 649 | [15] | Stamm H, Bonansinga M R and Marques F D S 1998 J. Nucl. Mater. 258 1756 | [16] | Liu F, Peng S, Ren H and Zhu K G 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 333 120 | [17] | Chen Z, Han W, Yu J and Zhu K G 2016 J. Nucl. Mater. 472 110 | [18] | Chen Z, Han W, Yu J, Kecskes L, Zhu K G and Wei Q 2016 J. Nucl. Mater. 479 418 | [19] | Liu F, Peng S, Ren H, Long Z, Han W, Yu J, Chen Z and Zhu K G 2014 Fusion Eng. Des. 89 2516 | [20] | Arshad K, Zhao M Y, Yuan Y, Zhang Y, Zhao Z H, Wang B, Zhou Z J and Lu G H 2014 J. Nucl. Mater. 455 96 | [21] | Mostako A T T, Khare A and Rao C V S 2012 J. Nucl. Mater. 423 53 | [22] | Calculated CrW Phase Diagram [DB/OL] 20180910 http://resource.npl.co.uk/mtdata/phdiagrams/crw | [23] | Zayachuk Y, Hoen M H J T, Zeijlmans V and Emmichoven P A 2013 Nucl. Fusion 53 013013 | [24] | Sakaki K, Kawase T, Hirato M, Mizuno M, Araki H, Shirai Y and Nagumo M 2006 Scr. Mater. 55 1031 | [25] | Armstrong D E J and Britton T B 2014 Mater. Sci. & Eng. A 611 388 | [26] | Lee H T, Haasz A A and Davis J W 2007 J. Nucl. Mater. 360 196 | [27] | Lee H T, Haasz A A, Davis J W et al 2007 J. Nucl. Mater. 363 898 | [28] | Kornelsen E V and Sinha M K 1969 J. Appl. Phys. 40 2888 | [29] | Kolk G J V D, Veen A A and Caspers L M 1985 J. Nucl. Mater. 127 56 | [30] | Zhang F, Yoshida N, Iwakiri H and Xu Z 2004 J. Nucl. Mater. 329 692 | [31] | Wang W, Roth J, Lindig S and Wu C H 2001 J. Nucl. Mater. 299 124 | [32] | Veen A V, Kolk G J V D, Filius H A, Westerduin K T and Caspers L M 1984 Nucl. Instrum. Methods Phys. Res. Sect. B 2 779 | [33] | Abromeit 1986 Trans. Tech. Publ. 29 647 | [34] | Kalashinikov A N, Chernov I I and Kalin B A 2002 J. Nucl. Mater. 307 362 | [35] | Kalin B A, Chernov I I, Kalashnikov A N and Timofeyev V V 1996 J. Nucl. Mater. 233 1142 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|