Chin. Phys. Lett.  2018, Vol. 35 Issue (12): 125202    DOI: 10.1088/0256-307X/35/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Relativistic Spherical Plasma Waves in a Collisional and Warm Plasma
Zhong-Kui Kuang1,2, Li-Hong Cheng1,3, Pan-Fei Geng1, Rong-An Tang1, Ju-Kui Xue1**
1College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
3School of Science, Guizhou University of Engineering Science, Bijie 551700
Cite this article:   
Zhong-Kui Kuang, Li-Hong Cheng, Pan-Fei Geng et al  2018 Chin. Phys. Lett. 35 125202
Download: PDF(611KB)   PDF(mobile)(607KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Under Lagrange coordinates, the relativistic spherical plasma wave in a collisional and warm plasma is discussed theoretically. Within the Lagrange coordinates and using the Maxwell and hydrodynamics equations, a wave equation describing the relativistic spherical wave is derived. The damped oscillating spherical wave solution is obtained analytically using the perturbation theory. Because of the coupled effects of spherical geometry, thermal pressure, and collision effect, the electron damps the periodic oscillation. The oscillation frequency and the damping rate of the wave are related to not only the collision and thermal pressure effect but also the space coordinate. Near the center of the sphere, the thermal pressure significantly reduces the oscillation period and the damping rate of the wave, while the collision effect can strongly influence the damping rate. Far away from the spherical center, only the collision effect can reduce the oscillation period of the wave, while the collision effect and thermal pressure have weak influence on the damping rate.
Received: 27 April 2018      Published: 23 November 2018
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  52.27.Ny (Relativistic plasmas)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11865014, 11764039, 11765017, 11475027, 11274255 and 11305132, the Natural Science Foundation of Gansu Province under Grant No 17JR5RA076, and the Scientific Research Project of Gansu Higher Education under Grand No 2016A-005.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/12/125202       OR      https://cpl.iphy.ac.cn/Y2018/V35/I12/125202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Kui Kuang
Li-Hong Cheng
Pan-Fei Geng
Rong-An Tang
Ju-Kui Xue
[1]Akhiezer A I and Polovin R V 1956 Sov. Phys. JETP 30 915
[2]Dawson J M 1959 Phys. Rev. 113 383
[3]Bulanov S V, Esirkepov T and Tajima T 2003 Phys. Rev. Lett. 91 085001
[4]Kando M, Fukuda Y, Pirozhkov A S et al 2007 Phys. Rev. Lett. 99 135001
[5]Kando M, Pirozhkov A S, Kawase K et al 2009 Phys. Rev. Lett. 103 235003
[6]Koch P and Albritton J 1974 Phys. Rev. Lett. 32 1420
[7]Zhang L, Dong Q L, Zhao J et al 2009 Acta Phys. Sin. 58 1833 (in Chinese)
[8]Modena A, Najmudin Z, Dangor A E et al 1995 Nature 19 377
[9]Dawson J M 1989 Sci. Am. 260 54
[10]Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[11]Joshi C, Mori W B, Katsouleas T et al 1984 Nature 311 525
[12]Karmakar M, Maity C, Chakrabarti N and Sengupta S 2016 Eur. Phys. J. D 70 144
[13]Mangles S P D, Murphy C D, Najmudin Z et al 2004 Nature 431 535
[14]Geddes C G R, Toth C, van Tilborg J et al 2004 Nature 431 538
[15]Faure J, Glinec Y, Pukhov A et al 2004 Nature 431 541
[16]Leemans W P, Nagler B, Gonsalves A J et al 2006 Nat. Phys. 2 696
[17]Hafz N A M, Jeong T M et al 2008 Nat. Photon. 2 571
[18]Stix T H 1962 Theory Plasma Waves (New York: McGraw-Hill)
[19]Bulanov S S, Maksimchuk A, Schroeder C B et al 2012 Phys. Plasmas 19 020702
[20]Davidson R C and Schram P P 1968 Nucl. Fusion 8 183
[21]Davidson R C 1972 Methods Nonlinear Plasma Theory (New York: Academic)
[22]Kaw P 1970 Phys. Fluids 13 472
[23]Coffey T P 1971 Phys. Fluids 14 1402
[24]Katsouleas T and Mori W B 1988 Phys. Rev. Lett. 61 90
[25]Kruer W L 1979 Phys. Fluids 22 1111
[26]Rosenzweig J B 1988 Phys. Rev. A 38 3634
[27]Chen F F 1990 Phys. Scr. T30 14
[28]Sheng Z M and Meyer-ter-Vehn J 1997 Phys. Plasmas 4 493
[29]Mori W B and Katsouleas T 1990 Phys. Scr. T30 127
[30]Asenjo F A, Borotto F A, Chian Abraham C L et al 2012 Phys. Rev. E 85 046406
[31]Mikhailovskii A B, Onishchenko O G and Tatarinov E G 1985 Plasma Phys. Control. Fusion 27 527
[32]Brantov A V, Esirkepov T Z, Kando M et al 2008 Phys. Plasmas 15 073111
[33]Rosenbluth M N and Liu C S 1972 Phys. Rev. Lett. 29 701
Related articles from Frontiers Journals
[1] A. Lysenko, I. Volk, A. Serozhko, O. Rybalko. Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams[J]. Chin. Phys. Lett., 2017, 34(7): 125202
[2] Chun-Yun Gan, Nong Xiang, Zhi Yu. Spectral Broadening of Ion Bernstein Wave Due to Parametric Decay Instabilities[J]. Chin. Phys. Lett., 2016, 33(08): 125202
[3] SUN Xin-Feng, JIANG Zhong-He, XU Tao, HU Xi-Wei, ZHUANG Ge, WANG Lu, WANG Xiao-Hong. Absolute and Convective Instabilities of Two-Plasmon Decay in an Inhomogeneous Magnetized Plasma[J]. Chin. Phys. Lett., 2015, 32(12): 125202
[4] WANG Chuan-Bing, WEI Jing-Dong, WANG Bin, WANG Shui . Physical Process for the Pick-Up of Minor Ions by Low-Frequency Alfvén Waves[J]. Chin. Phys. Lett., 2013, 30(5): 125202
[5] Taghi Mohsenpour, Hassan Ehsani Amri. The Gain Equation of a Helical Wiggler Free Electron Laser with Ion-Channel Guiding and/or an Axial Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(3): 125202
[6] LUAN Qi-Bin, SHI Yi-Peng, and WANG Xiao-Gang. Mode Conversion and Whistler Wave Generation on an Alfvén Resonance Layer in High Beta Plasmas[J]. Chin. Phys. Lett., 2012, 29(8): 125202
[7] B. Farokhi, M. Eghbali. Effects of an Electric Field on the Cylindrical Dust Acoustic Wave in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2012, 29(7): 125202
[8] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 125202
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 125202
[10] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 125202
[11] PENG Li-Li, GAO Zhe. Effect of Elongation on Critical Gradient for Toroidal Electron Temperature Gradient Modes[J]. Chin. Phys. Lett., 2008, 25(11): 125202
[12] ZHOU Yan, LI Lian-Cai, LI Yong-Gao, JIAO Yi-Ming, DENG Zhong-Chao, YI Jiang, LIU Yi, ZHAO Kai-Jun, JI Xiao-Quan, PENG Bei-Bin, YANG Qing-wei, DUAN Xu-Ru, DING Xuan-Tong. Density Fluctuation Measurements Using FIR Interferometer on HL-2A Tokamak[J]. Chin. Phys. Lett., 2008, 25(7): 125202
[13] ZHOU Zhu-Wen, M. A. LIEBERMAN, Sungjin KIM, JI Shi-Yin, DENG Ming-Sen, SUN Guang-Yu. Low-Frequency Relaxation Oscillations in Capacitive Discharge Processes[J]. Chin. Phys. Lett., 2008, 25(2): 125202
[14] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 125202
[15] GAN Bao-Xia, CHEN Yin-Hua. Oscillations of Magnetized Dust Grains in Plasma Sheath with Negative Ions[J]. Chin. Phys. Lett., 2007, 24(7): 125202
Viewed
Full text


Abstract