CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium |
Xiang-Yue Liu1, Hong Zhang1,2,3**, Xin-Lu Cheng1 |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 2Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065 3College of Physical Science and Technology, Sichuan University, Chengdu 610065
|
|
Cite this article: |
Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng 2018 Chin. Phys. Lett. 35 116201 |
|
|
Abstract The lattice dislocation interacting with grain boundary in the polycrystal exerts an evident influence on the materials' strength and toughness. A comprehensive study regarding the dislocation–twinning boundary (TB) interaction in $\alpha$-titanium and TB migration is performed by employing molecular dynamic simulation. We analyze the interactions between dislocation and TB, under the conditions of plastic deformation and thermal stress, including the interaction between pure edge $\langle a\rangle$ dislocation and $({11\bar{2}2})$ TB and the interaction between mixed type $\langle a\rangle$ dislocations and $({10\bar{1}1})$ TB at 10 K/300 K. The $\langle {c+a} \rangle$ pyramidal transmitting slip mode is motivated in the case of edge dislocation–$({11\bar{2}2})$ interaction at 300 K and then transforms into basal-dissociated dislocation after experiencing the complex dissociation and combination. The basal-dissociated pyramidal partial dislocation located in the second grain can be driven to penetrate through the second grain leaving the multiple stacking faults behind. Dissociation of incident basal dislocation on $({10\bar{1}1})$ TB results in a nucleation of a $({10\bar{1}1})$ twin embryo in twin crystals at room temperature. We determine the nature of the generated defects by means of the Burgers circuit analysis.
|
|
Received: 23 June 2018
Published: 23 October 2018
|
|
PACS: |
62.20.F-
|
(Deformation and plasticity)
|
|
61.43.Bn
|
(Structural modeling: serial-addition models, computer simulation)
|
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
|
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0303603, and the National Natural Science Foundation of China under Grant Nos 11474207 and 11774248. |
|
|
[1] | Valiev R Z 1997 Mater. Sci. Eng. A 234 59 | [2] | Kumar K S, van Swygenhoven H and Suresh S 2003 Acta Mater. 51 5743 | [3] | Yoo M H 1981 Metall. Trans. A 12 409 | [4] | Christian J W and Mahajan S 1995 Prog. Mater. Sci. 39 1 | [5] | Liao X Z, Wang J, Nie J F, Jiang Y Y and Wu P D 2016 MRS Bull. 41 314 | [6] | Partridge P G 1967 Int. Mater. Rev. 12 169 | [7] | Capolungo L and Beyerlein I J 2008 Phys. Rev. B 78 024117 | [8] | Wang S Y, Zhang Y D, Schuman C, Lecomte J S, Zhao X, Zuo L, Philippe M J and Esling C 2015 Acta Mater. 82 424 | [9] | Yoo M H, Agnew S R, Morris J R and Ho K M 2001 J. Mater. Sci. Eng. A 319 87 | [10] | Yoo M H, Morris J R, Ho K M and Agnew S R 2002 Metall. Mater. Trans. A 33 813 | [11] | Yu Q, Sun J, Morris J W and Minor A M 2013 Scr. Mater. 69 57 | [12] | Guo Y, Abdolv, H, Britton T B and Wilkinson A J 2017 Acta Mater. 126 221 | [13] | Ostapovets A and Serra A 2017 J. Mater. Sci. 52 533 | [14] | Lainé S J and Knowles K M 2015 Philos. Mag. 95 2153 | [15] | Xu S, Schuman C and Lecomte J S 2016 Scr. Mater. 116 152 | [16] | Lane N J, Simak S I, Mikhaylushkin A S, Abrikosov I A, Hultman L and Barsoum M W 1951 Phys. Rev. B 84 551 | [17] | Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter Hc and Hahn H 2008 Acta Mater. 56 1126 | [18] | Serra A and Bacon D J 1995 Acta Metall. Mater. 43 4465 | [19] | Thompson N and Millard D J 2010 Philos. Mag. 43 422 | [20] | Serra A, Pond R C and Bacon D J 1991 Acta Metall. Mater. 39 1469 | [21] | Serra A, Bacon D J and Pond R C 1988 Acta Metall. 36 3183 | [22] | Wang J, Beyerlein I J, Hirth J P and Tomé C N 2011 Acta Mater. 59 3990 | [23] | Wang J, Hirth J P and Tomé C N 2009 Acta Mater. 57 5521 | [24] | Plimpton S 1995 J. Comput. Phys. 117 1 | [25] | Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012 | [26] | Hennig R G, Lenosky T J, Trinkle D R, Rudin S P and Wilkins J W 2008 Phys. Rev. B 78 054121 | [27] | Rawat S and Mitra N 2018 Comput. Mater. Sci. 141 19 | [28] | Wu Z X and Curtin W A 2015 Nature 526 62 | [29] | Mompiou F, Legros M, Ensslen C and Kraft O 2015 Acta Mater. 96 57 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|