Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 116201    DOI: 10.1088/0256-307X/35/11/116201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium
Xiang-Yue Liu1, Hong Zhang1,2,3**, Xin-Lu Cheng1
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
2Key Laboratory of High Energy Density Physics and Technology (Ministry of Education), Sichuan University, Chengdu 610065
3College of Physical Science and Technology, Sichuan University, Chengdu 610065
Cite this article:   
Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng 2018 Chin. Phys. Lett. 35 116201
Download: PDF(10428KB)   PDF(mobile)(10617KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The lattice dislocation interacting with grain boundary in the polycrystal exerts an evident influence on the materials' strength and toughness. A comprehensive study regarding the dislocation–twinning boundary (TB) interaction in $\alpha$-titanium and TB migration is performed by employing molecular dynamic simulation. We analyze the interactions between dislocation and TB, under the conditions of plastic deformation and thermal stress, including the interaction between pure edge $\langle a\rangle$ dislocation and $({11\bar{2}2})$ TB and the interaction between mixed type $\langle a\rangle$ dislocations and $({10\bar{1}1})$ TB at 10 K/300 K. The $\langle {c+a} \rangle$ pyramidal transmitting slip mode is motivated in the case of edge dislocation–$({11\bar{2}2})$ interaction at 300 K and then transforms into basal-dissociated dislocation after experiencing the complex dissociation and combination. The basal-dissociated pyramidal partial dislocation located in the second grain can be driven to penetrate through the second grain leaving the multiple stacking faults behind. Dissociation of incident basal dislocation on $({10\bar{1}1})$ TB results in a nucleation of a $({10\bar{1}1})$ twin embryo in twin crystals at room temperature. We determine the nature of the generated defects by means of the Burgers circuit analysis.
Received: 23 June 2018      Published: 23 October 2018
PACS:  62.20.F- (Deformation and plasticity)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  62.25.-g (Mechanical properties of nanoscale systems)  
Fund: Supported by the National Key R&D Program of China under Grant No 2017YFA0303603, and the National Natural Science Foundation of China under Grant Nos 11474207 and 11774248.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/116201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/116201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiang-Yue Liu
Hong Zhang
Xin-Lu Cheng
[1]Valiev R Z 1997 Mater. Sci. Eng. A 234 59
[2]Kumar K S, van Swygenhoven H and Suresh S 2003 Acta Mater. 51 5743
[3]Yoo M H 1981 Metall. Trans. A 12 409
[4]Christian J W and Mahajan S 1995 Prog. Mater. Sci. 39 1
[5]Liao X Z, Wang J, Nie J F, Jiang Y Y and Wu P D 2016 MRS Bull. 41 314
[6]Partridge P G 1967 Int. Mater. Rev. 12 169
[7]Capolungo L and Beyerlein I J 2008 Phys. Rev. B 78 024117
[8]Wang S Y, Zhang Y D, Schuman C, Lecomte J S, Zhao X, Zuo L, Philippe M J and Esling C 2015 Acta Mater. 82 424
[9]Yoo M H, Agnew S R, Morris J R and Ho K M 2001 J. Mater. Sci. Eng. A 319 87
[10]Yoo M H, Morris J R, Ho K M and Agnew S R 2002 Metall. Mater. Trans. A 33 813
[11]Yu Q, Sun J, Morris J W and Minor A M 2013 Scr. Mater. 69 57
[12]Guo Y, Abdolv, H, Britton T B and Wilkinson A J 2017 Acta Mater. 126 221
[13]Ostapovets A and Serra A 2017 J. Mater. Sci. 52 533
[14]Lainé S J and Knowles K M 2015 Philos. Mag. 95 2153
[15]Xu S, Schuman C and Lecomte J S 2016 Scr. Mater. 116 152
[16]Lane N J, Simak S I, Mikhaylushkin A S, Abrikosov I A, Hultman L and Barsoum M W 1951 Phys. Rev. B 84 551
[17]Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter Hc and Hahn H 2008 Acta Mater. 56 1126
[18]Serra A and Bacon D J 1995 Acta Metall. Mater. 43 4465
[19]Thompson N and Millard D J 2010 Philos. Mag. 43 422
[20]Serra A, Pond R C and Bacon D J 1991 Acta Metall. Mater. 39 1469
[21]Serra A, Bacon D J and Pond R C 1988 Acta Metall. 36 3183
[22]Wang J, Beyerlein I J, Hirth J P and Tomé C N 2011 Acta Mater. 59 3990
[23]Wang J, Hirth J P and Tomé C N 2009 Acta Mater. 57 5521
[24]Plimpton S 1995 J. Comput. Phys. 117 1
[25]Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[26]Hennig R G, Lenosky T J, Trinkle D R, Rudin S P and Wilkins J W 2008 Phys. Rev. B 78 054121
[27]Rawat S and Mitra N 2018 Comput. Mater. Sci. 141 19
[28]Wu Z X and Curtin W A 2015 Nature 526 62
[29]Mompiou F, Legros M, Ensslen C and Kraft O 2015 Acta Mater. 96 57
Related articles from Frontiers Journals
[1] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 116201
[2] Dong-Mei Li, Lan-Sheng Chen, Peng Yu, Ding Ding, and Lei Xia. A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties[J]. Chin. Phys. Lett., 2020, 37(8): 116201
[3] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 116201
[4] Lun Xiong, Li-Gang Bai, Xiao-Dong Li, Jing Liu. Radial X-Ray Diffraction Study of Static Strength of Tantalum to 80GPa[J]. Chin. Phys. Lett., 2017, 34(10): 116201
[5] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 116201
[6] Wei-Dong Cheng, Chuan-Hui Ren, Xiao-Hua Gu, Zhao-Jun Wu, Xue-Qing Xing, Guang Mo, Zhong-Jun Chen, Zhong-Hua Wu. Microstructural Changes of Graphene/PLA/PBC Nanofibers by Electrospinning during Tensile Tests[J]. Chin. Phys. Lett., 2017, 34(3): 116201
[7] Xu Zhang, Xiang-Cheng Zhang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: Avalanche Size Predicted by a Continuum Crystal Plasticity Model[J]. Chin. Phys. Lett., 2016, 33(10): 116201
[8] Xu Zhang, Zhi Wang, Qian Li, Fu-Lin Shang. Strain Avalanches in Microsized Single Crystals: A Theoretical Study of the Relation between the Avalanche Size and Duration[J]. Chin. Phys. Lett., 2016, 33(09): 116201
[9] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 116201
[10] DONG Yuan-Xiang, ZHANG Guo-Hua, SUN Qi-Cheng, ZHAO Xue-Dan, NIU Xiao-Na. Analysis of Low-Frequency Vibrational Modes and Particle Rearrangements in Marginally Jammed Amorphous Solid under Quasi-Static Shear[J]. Chin. Phys. Lett., 2015, 32(12): 116201
[11] ZHANG Xu, SHANG Fu-Lin. The Burst Time Duration in Micropillar Deformation[J]. Chin. Phys. Lett., 2014, 31(2): 116201
[12] WANG Yin, ZHOU Jin-Xiong, WU Xiao-Hong, LI Bo, ZHANG Ling. Energy Diagrams of Dielectric Elastomer Generators under Different Types of Deformation[J]. Chin. Phys. Lett., 2013, 30(6): 116201
[13] ZHOU Kai, LI Hui, WANG Zhu . Plastic Deformation of Nanocrystalline Zinc Investigated by Positron Annihilation Lifetime Spectroscopy[J]. Chin. Phys. Lett., 2013, 30(5): 116201
[14] CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo. Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales[J]. Chin. Phys. Lett., 2013, 30(4): 116201
[15] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 116201
Viewed
Full text


Abstract