Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 114302    DOI: 10.1088/0256-307X/35/11/114302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate
Han Chen1, Ming-Xi Deng2**, Ning Hu2, Ming-Liang Li1, Guang-Jian Gao1, Yan-Xun Xiang3**
1Department of Physics, Army Logistics University of PLA, Chongqing 401331
2College of Aerospace Engineering, Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044
3School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237
Cite this article:   
Han Chen, Ming-Xi Deng, Ning Hu et al  2018 Chin. Phys. Lett. 35 114302
Download: PDF(730KB)   PDF(mobile)(722KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We analyze the effect of second-harmonic generation (SHG) of primary Lamb wave propagation in a two-layered composite plate, and then investigate the influence of interfacial properties on the said effect at low frequency. It is found that changes in the interfacial properties essentially affect the dispersion relation and then the maximum cumulative distance of the double-frequency Lamb wave generated. This will remarkably influence the efficiency of SHG. To overcome the complications arising from the inherent dispersion and multimode natures in analyzing the SHG effect of Lamb waves, the present work focuses on the analysis of the SHG effect of low-frequency dilatational Lamb wave propagation. Both the numerical analysis and finite element simulation indicate that the SHG effect of low-frequency dilatational Lamb wave propagation is found to be much more sensitive to changes in the interfacial properties than primary Lamb waves. The potential of using the SHG effect of low-frequency dilatational Lamb waves to characterize a minor change in the interfacial properties is analyzed.
Received: 29 August 2018      Published: 23 October 2018
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  43.20.Mv (Waveguides, wave propagation in tubes and ducts)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11834008, 11632004, 11474361 and 11622430.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/114302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I11/114302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Han Chen
Ming-Xi Deng
Ning Hu
Ming-Liang Li
Guang-Jian Gao
Yan-Xun Xiang
[1]Abrate S 1991 Appl. Mech. Rev. 44 155
[2]Deng M X, Wang P and Lv X F 2006 J. Phys. D 39 3018
[3]Shariyat M 2009 Compos. Struct. 88 228
[4]Wang Y et al 2000 Adv. Mech. 30 378
[5]Li M L, Deng M X, Gao G J and Xiang Y X 2018 J. Sound Vib. 421 234
[6]Davies R J and Kinloch A J 1989 The Surface Characterisation and Adhesive Bonding of Aluminium (Berlin: Springer) p 8
[7]Nagy P B 1992 J. Nondestr. Eval. 11 127
[8]Lavrentyev A I and Rokhlin S I 1998 Acoust. Soc. Am. 103 657
[9]Rokhlin S I and Wang Y J 1991 J. Acoust. Soc. Am. 89 503
[10]Chillara V K and Lissenden C 2014 Ultrasonics 54 1553
[11]Chillara V K and Lissenden C J 2016 Opt. Eng. 55 011002
[12]Zuo P, Yu Zhou Y and Fan Z 2016 Appl. Phys. Lett. 109 021902
[13]Wan X et al 2016 Smart Mater. Struct. 25 045023
[14]Zhu W J, Deng M X, Xiang Y X, Xuan F Z and Liu C J 2016 Chin. Phys. Lett. 33 104301
[15]Li M L et al 2016 Chin. Phys. Lett. 33 124301
[16]Zuo P, Zhou Y and Fan Z 2016 AIP Adv. 6 075207
[17]Deng M X 2005 NDT E Int. 38 85
[18]Xiang Y X, Deng M X and Xuan F Z 2009 J. Appl. Phys. 106 024902
[19]Zhu W J, Xiang Y X, Liu C J, Deng M X and Xuan F Z 2018 J. Appl. Phys. 123 104902
[20]Gao G, Deng M and Li M 2015 Acta Phys. Sin. 64 184303 (in Chinese)
[21]Deng M X, Wang P and Lv X F 2005 Appl. Phys. Lett. 86 124104
[22]Deng M X 2003 J. Appl. Phys. 94 4152
[23]Liu L P and Kaushik B 2009 Int. J. Solids Struct. 46 3290
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 114302
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 114302
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 114302
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 114302
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 114302
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 114302
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 114302
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 114302
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 114302
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 114302
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 114302
[12] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 114302
[13] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 114302
[14] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 114302
[15] Ming-Liang Li, Ming-Xi Deng, Guang-Jian Gao, Han Chen, Yan-Xun Xiang. Influence of Change in Inner Layer Thickness of Composite Circular Tube on Second-Harmonic Generation by Primary Circumferential Ultrasonic Guided Wave Propagation[J]. Chin. Phys. Lett., 2017, 34(6): 114302
Viewed
Full text


Abstract