CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication and Characteristics of Nano-Floating Gate Memories with ZnO Nano-Crystals as Charge-Storage Layer |
Lu Liu, Yong Su**, Jing-Ping Xu, Yi-Xian Zhang |
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074
|
|
Cite this article: |
Lu Liu, Yong Su, Jing-Ping Xu et al 2018 Chin. Phys. Lett. 35 068101 |
|
|
Abstract Nano-floating gate memory devices with ZnO nano-crystals as charge storage layers are fabricated, and the influence of post-deposition annealing temperature and thickness of the ZnO layer are investigated. Atomic force microscopy and scanning electron microscopy reveal the morphology of discrete ZnO nano-crystals. For capacitance-voltage measurements, it is found that the memory device with 1.5 nm ZnO and annealed at 700$^{\circ}\!$C shows a larger memory window of 4.3 V (at $\pm$6 V) and better retention characteristics than memory devices with 2.5 nm ZnO or annealed at other temperatures. These results indicate that the nano-floating gate memory with ZnO nano-crystals can obtain good trade-off memory properties.
|
|
Received: 30 January 2018
Published: 19 May 2018
|
|
PACS: |
81.07.Bc
|
(Nanocrystalline materials)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
81.16.Dn
|
(Self-assembly)
|
|
81.40.Ef
|
(Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant No 61404055. |
|
|
[1] | Blauwe J D 2002 IEEE Trans. Nanotechnol. 99 72 | [2] | Wang C C, Wu J Y, Chiou Y K, Chang C H and Wu T B 2007 Appl. Phys. Lett. 91 202110 | [3] | Guan W, Long S, Liu M, Li Z, Hu Y and Liu Q 2007 J. Phys. D 40 2754 | [4] | Chen J H, Wang Y Q, Yoo W J, Yeo Y C, Samudra G, Chan D S, Du A Y and Kwong D L 2004 IEEE Trans. Electron Devices 51 1840 | [5] | Liu Y, Tang S, Mao C and Banerjee S 2006 Device Res. Conf. (State College, PA, USA 26–28 June 2006) p 121 | [6] | Kim D W, Kim T and Banerjee S K 2003 IEEE Trans. Electron Devices 50 1823 | [7] | Tan Z L, Samanta S K, Yoo W J and Lee S 2005 Appl. Phys. Lett. 86 013107 | [8] | Huang Y, Gou H Y, Sun Q Q, Ding S J, Zhang W and Zhang S L 2009 Chin. Phys. Lett. 26 108102 | [9] | Gupta D, An, M, Ryu S W, Choi Y K and Yoo S 2008 Appl. Phys. Lett. 93 224106 | [10] | Yeom D, Kang J, Lee M, Jang J, Yun J, Jeong D Y, Yoon C, Koo J and Kim S 2008 Nanotechnology 19 395204 | [11] | Park C H, Lee G, Lee K H, Im S, Lee B H and Sung M M 2009 Appl. Phys. Lett. 95 153502 | [12] | Nazek E A, Furkan C, Sabri A, Ali K O and Ammar N 2014 Appl. Phys. Lett. 105 033102 | [13] | Kundu S, Gollu S R, Sharma R, Halder N N, Biswas P, Banerji P and Gupta D 2013 J. Appl. Phys. 114 084509 | [14] | Hyeong E H, Bae S M, Park C R, Yang H and HaHwang J 2011 Curr. Appl. Phys. 11 1354 | [15] | Che Y, Zhang Y, Cao X, Song X, Cao M, Dai H, Yang J, Zhang G and Yao J 2016 Appl. Phys. Lett. 109 013106 | [16] | Kouvatsos D N, Ioannou-Sougleridis V and Nassiopoulou A G 2003 Appl. Phys. Lett. 82 397 | [17] | Chen K Y, Teng S C, Chang H H and Wu Y H 2016 IEEE J. Electron Devices Soc. 4 335 | [18] | Johansson M, Yousif M Y A, Sareen A, Lundgren P, Bengtsson S and Södervall U 2002 Proc. 32nd European Solid-State Device Research Conference (Firenze, Italy 24–26 September 2002) p 419 | [19] | Chang T C, Yan S T, Hsu C H, Tang M T, Lee J F, Tai Y H, Liu P T and Sze S M 2004 Appl. Phys. Lett. 84 2581 | [20] | Peng Y, Liu F, Jin R, Wei K, Du G, Kang J and Liu X 2012 Solid-State Integrated Circuit Technol. (Xi'an, China 29 October–1 November 2012) p 1 | [21] | Liu L, Xu J P, Ji F, Chen J X and Lai P T 2012 Appl. Phys. Lett. 101 133503 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|