CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels |
Si Xiao**, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He** |
1Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083 2School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 3Institute of Mathematics and Physics, Central South University of Forestry and Technology, Changsha 410004
|
|
Cite this article: |
Si Xiao, Hui Wang, Sheng Liu et al 2018 Chin. Phys. Lett. 35 067801 |
|
|
Abstract Four kinds of Au nanorods (NRs) with different aspect ratios are designed to adjust the relationship between resonance energy level of longitudinal (L) and transverse (T) modes. During the femto-second $Z$-scan experiments, huge saturable absorption phenomena are observed while the energy level T is located between one to two times of the energy level L. This means that the energy may transfer between longitudinal and transverse energy levels in the same and/or different Au NRs. It effectively depresses the production of revised saturated absorption and increases the saturable absorption efficiency. This method is significant for the preparation of high-efficiency saturable absorption devices.
|
|
Received: 31 January 2018
Published: 19 May 2018
|
|
PACS: |
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.Qa
|
(Nanorods)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11404410 and 11504105, and the Hunan Provincial Natural Science Foundation under Grant No 2016JJ3140. |
|
|
[1] | Wang Y Q, He J, Xiao S, Yang N G and Chen H Z 2014 Acta Phys. Sin. 63 144204 (in Chinese) | [2] | Wang Y Q, Lin C F, Zhang J D, He J and Xiao S 2015 Acta Phys. Sin. 64 034214 (in Chinese) | [3] | Wang Y W, Huang G H, Mu H R, Lin S H, Chen J Z, Xiao S, Bao Q L and He J 2015 Appl. Phys. Lett. 107 091905 | [4] | Wang Y W, Liu S, Zeng B W, Huang H, Xiao J, Li J B, Long M Q, Xiao S, Yu X F, Gao Y L and He J 2017 Nanoscale 9 4683 | [5] | Xiao S, Lv B S, Wu L, Zhu M L, He J and Tao S H 2015 Opt. Express 23 5875 | [6] | Guo L H, Wang Y W, Jiang Y Q, Xiao S and He J 2017 Chin. Phys. Lett. 34 077803 | [7] | Hu Q, Wu H, Sun J, Yan D H, Gao Y L and Yang J L 2016 Nanoscale 8 5350 | [8] | Xiong J, Yang B C, Wu R S, Huang Y L, Sun J, Zhang J, Tao S J, Gao Y L and Yang J L 2016 Organic Electron. 30 30 | [9] | Liu P, Yang B C, Zhou C H, Liu G, Wu R S, Zhang C J and Wan F 2017 Chin. Phys. B 26 058401 | [10] | Huang H H, Yan F Q, Kek Y M, Chew C H, Xu G Q, Ji Q, Oh P S and Tang S H 1997 Langmuir 13 172 | [11] | Xiao Y F, Liu Y C, Li, B B, Chen Y L, Li Y and Gong Q H 2012 Phys. Rev. A 85 031805 | [12] | Wang P, Lu Y H, Tang L, Zhang J Y, Ming H, Xie J P, Ho F H, Chang H H, Lin H Y and Tsai D P 2004 Opt. Commun. 229 425 | [13] | Ramakrishna G, Varnavski O, Kim J, Lee D, Goodson T and Am J 2008 Chem. Soc. 130 5032 | [14] | Gao Y C, Zhang X R, Li Y L, Liu H F, Wang Y X, Chang Q, Jiao W Y and Song Y L 2005 Opt. Commun. 251 429 | [15] | De Boni L, Wood E L, Toro C and Hernandez F E 2008 Plasmonics 3 171 | [16] | Zhang H, Tang D Y, Zhao L M, Bao Q L and Loh K P 2009 Opt. Express 17 17630 | [17] | Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D and Fan D 2015 Opt. Express 23 12823 | [18] | Gong H M, Zhou Z K, Xiao S, Song H, Su X R, Li M and Wang Q Q 2007 Chin. Phys. Lett. 24 3443 | [19] | Chen H, Shao L, Li Q and Wang J 2013 Chem. Soc. Rev. 42 2679 | [20] | Salah A, Bakr M, Hassabelnaby S, Azzouz I and Badr Y 2015 Opt. Photon. J. 5 125 | [21] | Elim H I, Yang J, Lee J Y, Mi J and Ji W 2006 Appl. Phys. Lett. 88 083107 | [22] | Ding S J, Nan F, Yang D J, Liu X L, Wang Y L, Zhou L, Hao Z H and Wang Q Q 2015 Sci. Rep. 5 9735 | [23] | Xiong S Y, Qi W H, Huang B Y, Wang M P, Li Y J, Li Z and Liang S Q 2011 Europhys. Lett. 93 66002 | [24] | Jiang Y Q, Ma Y, Fan Z Y, Wang P, Li X H, Wang Y W, Zhang Y, Shen J Q, Wang G, Yang Z J, Xiao S, Gao Y L and He J 2018 Opt. Lett. 43 523 | [25] | Li Y J, Qi W H, Huang B Y, Wang M P and Xiong S Y 2010 J. Phys. Chem. Solids 71 810 | [26] | Willets K A and van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267 | [27] | Eustis S and El-Sayed M A 2006 Chem. Soc. Rev. 35 209 | [28] | Link S and El-Sayed M A 1999 J. Phys. Chem. B 103 8410 | [29] | Link S, Mohamed M B and El-Sayed M A 1999 J. Phys. Chem. B 103 3073 | [30] | Nikoobakht B and El-Sayed M A 2003 Chem. Mater. 15 1957 | [31] | Wang Y, Mu H, Li X, Yuan J, Chen J, Xiao S, Bao Q, Gao Y and He J 2016 Appl. Phys. Lett. 108 221901 | [32] | Zhang J, Yu X, Han W, Lv B, Li X, Xiao S, Gao Y and He J 2016 Opt. Lett. 41 1704 | [33] | Sheik-Bahae M, Said A A, Wei T H, Hagan D J and van Stryl E W 1990 IEEE J. Quantum Electron. 26 760 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|