Chin. Phys. Lett.  2016, Vol. 33 Issue (10): 108104    DOI: 10.1088/0256-307X/33/10/108104
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition
Ru-Dai Quan, Jin-Cheng Zhang**, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
Cite this article:   
Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang et al  2016 Chin. Phys. Lett. 33 108104
Download: PDF(1279KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nearly lattice-matched InAlGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08 cm$^{2}$/V$\cdot$s together with a high two-dimensional-electron-gas density of $1.43\times10^{13}$ cm$^{-2}$ for the InAlGaN/GaN heterostructure of 20 nm InAlGaN quaternary barrier. High electron mobility transistors with gate dimensions of $1\times50$ μm$^{2}$ and 4 μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
Received: 29 June 2016      Published: 27 October 2016
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.05.Ea (III-V semiconductors)  
  81.16.Be (Chemical synthesis methods)  
  85.30.Tv (Field effect devices)  
Fund: Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002, and the National Natural Sciences Foundation of China under Grant Nos 61574108, 61334002, 61474086 and 61306017.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/10/108104       OR      https://cpl.iphy.ac.cn/Y2016/V33/I10/108104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ru-Dai Quan
Jin-Cheng Zhang
Ya-Chao Zhang
Wei-Hang Zhang
Ze-Yang Ren
Yue Hao
[1]Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 IEEE Trans. Electron Devices 48 465
[2]Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 IEEE Trans. Electron Devices 48 586
[3]Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245
[4]Wu J J, Li D B, Lu Y, Han X X, Li J M, Wei H Y, Kang T T, Wang X H, Liu X L, Zhu Q S and Wang Z G 2004 J. Cryst. Growth 273 79
[5]Goto O, Tomiya S, Hohshina Y, Tanaka T et al 2007 Proc. SPIE 6485 64850Z
[6]Kuzmík J 2001 IEEE Electron Device Lett. 22 510
[7]Jeganathan K, Shimizu M, Okumura H, Yano Y and Akutsu N 2007 J. Cryst. Growth 304 342
[8]Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106
[9]Schenk H P D, Nemoz M, Korytov M, Vennéguès P, Dr?ger A D and Hangleiter A 2008 Appl. Phys. Lett. 93 081116
[10]Wang R H, Li G W, Verma J, Berardi S R, Fang T, Guo J, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Device Lett. 32 1215
[11]Nakazawa S, Ueda T, Inoue K, Tanaka T, Ishikawa H and Egawa T 2005 IEEE Trans. Electron Devices 52 2124
[12]Lim T, Aidam R, Kirste L, Waltereit P, Quay R, Müller S and Ambacher O 2010 Appl. Phys. Lett. 96 252108
[13]Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504
[14]Benjamin R, Wille A, Ketteniss N, Hahn H, Hollander B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826
[15]Wang R H, Li G W, Karbasian G, Guo J, Song B, Yue Y Z, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Debdeep J and Xing H L 2013 IEEE Electron Device Lett. 34 378
[16]Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013
[17]Quan R D, Zhang J C, Xu S R, Xue J S, Zhao Y, Ning J, Lin Z Y, Ren Z Y and Hao Y 2016 Chin. Phys. Lett. 33 048101
[18]Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359
[19]Xue J S, Zhang J C and Hao Y 2014 J. Cryst. Growth 401 661
Related articles from Frontiers Journals
[1] Jia-Lin Ma, Hai-Long Wang, Xing-Min Zhang, Shuai Yan, Wen-Sheng Yan, Jian-Hua Zhao. Epitaxial Growth and Magnetic Properties of NiMnAs Films on GaAs Substrates[J]. Chin. Phys. Lett., 2019, 36(1): 108104
[2] Ying Yu, Chao Li, Hong-Hao Ma, Mei-Lan Qi, Sheng-Nian Luo. Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading[J]. Chin. Phys. Lett., 2018, 35(1): 108104
[3] Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai. High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 108104
[4] Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao. Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier[J]. Chin. Phys. Lett., 2016, 33(08): 108104
[5] Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao. Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(04): 108104
[6] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 108104
[7] ZHANG Pin-Liang, GONG Zi-Zheng, JI Guang-Fu, WANG Qing-Song, SONG Zhen-Fei, CAO Yan, WANG Xiang. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa[J]. Chin. Phys. Lett., 2013, 30(6): 108104
[8] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 108104
[9] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 108104
[10] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 108104
[11] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 108104
[12] ZHAI Feng-Xiao, ZUO Fang-Yuan, HUANG Huan, WANG Yang, LAI Tian-Shu, WU Yi-Qun, GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 108104
[13] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 108104
[14] ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition[J]. Chin. Phys. Lett., 2009, 26(2): 108104
[15] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 108104
Viewed
Full text


Abstract