CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition |
Ru-Dai Quan, Jin-Cheng Zhang**, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao |
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071
|
|
Cite this article: |
Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang et al 2016 Chin. Phys. Lett. 33 108104 |
|
|
Abstract Nearly lattice-matched InAlGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08 cm$^{2}$/V$\cdot$s together with a high two-dimensional-electron-gas density of $1.43\times10^{13}$ cm$^{-2}$ for the InAlGaN/GaN heterostructure of 20 nm InAlGaN quaternary barrier. High electron mobility transistors with gate dimensions of $1\times50$ μm$^{2}$ and 4 μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
|
|
Received: 29 June 2016
Published: 27 October 2016
|
|
|
|
Fund: Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002, and the National Natural Sciences Foundation of China under Grant Nos 61574108, 61334002, 61474086 and 61306017. |
|
|
[1] | Steven C B, Kiki I, Jason A R, Walter K, Doewon P, Harry B D, Daniel D K, Alma E W and Richard L H 2001 IEEE Trans. Electron Devices 48 465 | [2] | Wu Y F, Ibbetson J P, Parikh P, Keller B P, Mishra U K and Kapolnek D 2001 IEEE Trans. Electron Devices 48 586 | [3] | Liu Y, Egawa T, Ishikawa H and Jimbo T 2003 J. Cryst. Growth 259 245 | [4] | Wu J J, Li D B, Lu Y, Han X X, Li J M, Wei H Y, Kang T T, Wang X H, Liu X L, Zhu Q S and Wang Z G 2004 J. Cryst. Growth 273 79 | [5] | Goto O, Tomiya S, Hohshina Y, Tanaka T et al 2007 Proc. SPIE 6485 64850Z | [6] | Kuzmík J 2001 IEEE Electron Device Lett. 22 510 | [7] | Jeganathan K, Shimizu M, Okumura H, Yano Y and Akutsu N 2007 J. Cryst. Growth 304 342 | [8] | Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106 | [9] | Schenk H P D, Nemoz M, Korytov M, Vennéguès P, Dr?ger A D and Hangleiter A 2008 Appl. Phys. Lett. 93 081116 | [10] | Wang R H, Li G W, Verma J, Berardi S R, Fang T, Guo J, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Device Lett. 32 1215 | [11] | Nakazawa S, Ueda T, Inoue K, Tanaka T, Ishikawa H and Egawa T 2005 IEEE Trans. Electron Devices 52 2124 | [12] | Lim T, Aidam R, Kirste L, Waltereit P, Quay R, Müller S and Ambacher O 2010 Appl. Phys. Lett. 96 252108 | [13] | Xue J S, Hao Y, Zhang J C, Zhou X W, Liu Z Y, Ma J C and Lin Z Y 2011 Appl. Phys. Lett. 98 113504 | [14] | Benjamin R, Wille A, Ketteniss N, Hahn H, Hollander B, Heuken M, Kalisch H and Vescan A 2013 J. Electron. Mater. 42 826 | [15] | Wang R H, Li G W, Karbasian G, Guo J, Song B, Yue Y Z, Hu Z Y, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Debdeep J and Xing H L 2013 IEEE Electron Device Lett. 34 378 | [16] | Ketteniss N, Khoshroo L R, Eickelkamp M, Heuken M, Kalisch H, Jansen R H and Vescan A 2010 Semicond. Sci. Technol. 25 075013 | [17] | Quan R D, Zhang J C, Xu S R, Xue J S, Zhao Y, Ning J, Lin Z Y, Ren Z Y and Hao Y 2016 Chin. Phys. Lett. 33 048101 | [18] | Xue J S, Hao Y, Zhou X W, Zhang J C, Yang C K, Ou X X, Shi L Y, Wang H, Yang L A and Zhang J F 2011 J. Cryst. Growth 314 359 | [19] | Xue J S, Zhang J C and Hao Y 2014 J. Cryst. Growth 401 661 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|