Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 097102    DOI: 10.1088/0256-307X/33/9/097102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic and Magnetic Properties of Co- and Mn-codoped ZnO by Density Functional Theory
A. Stashans**, K. Rivera
Grupo de Fisicoquímica de Materiales, Universidad Técnica Particular de Loja, Apartado 11-01-608, Ecuador
Cite this article:   
A. Stashans, K. Rivera 2016 Chin. Phys. Lett. 33 097102
Download: PDF(477KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Zinc oxide crystal containing intrinsic oxygen vacancy defect as well as codoped with Mn and Co impurities is studied using density functional theory (DFT) calculations. An intra-atomic interaction term for the strongly correlated $d$-electrons by an unrestricted Hartree–Fock approximation (DFT+$U$ method) is introduced to more precisely describe the system under study. The electronic and magnetic properties are investigated and discussed in detail. In particular, it is found that relative defect positions might influence the outcome if the material exhibits or not the n-type electrical conductivity.
Received: 04 June 2016      Published: 30 September 2016
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
  75.30.Hx (Magnetic impurity interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/097102       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/097102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Stashans
K. Rivera
[1]Huang M H, Mao S, Feick H, Yan H, Wy Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[2]Mahan G D 1983 J. Appl. Phys. 54 3825
[3]Keis K, Magnusson E, Lindstrom H, Lindquist S E and Hagfeldt A 2002 Sol. Energy Mater. Sol. Cells 73 51
[4]Wang H T, Kang B S, Ren F, Tien L C, Sadik P W, Norton D P, Pearson S J and Lin J 2005 Appl. Phys. Lett. 86 243503
[5]Xu C X, Sun X W, Dong Z L and Yu M B 2004 Appl. Phys. Lett. 85 3878
[6]Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[7]Wu Y and Chen H 2012 J. Magn. Magn. Mater. 324 2153
[8]Sharma V K, Najim M, Srivastava A K and Varma G D 2012 J. Magn. Magn. Mater. 324 683
[9]Manivannan A, Dutta P, Glaspell G and Seehra M S 2006 J. Appl. Phys. 99 08M110
[10]Chang G S, Kurmaev E Z, Boukhvalov D W, Finkelstein L D, Colis S, Pedersen T M, Moewes A and Dinia A 2007 Phys. Rev. B 75 195215
[11]Walsh A, Da Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[12]Xu Q, Schmidt H, Zhou S, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2008 Appl. Phys. Lett. 92 082508
[13]Lathiotakis N N, Andriotis A N and Menon M 2008 Phys. Rev. B 78 193311
[14]Jayakumar O D, Salunke H G, Kadam R M, Mohapatra M, Yaswant G and Kulshreshtha S K 2006 Nanotechnology 17 1278
[15]Glaspell G, Dutta P and Manirannan A 2005 J. Cluster Sci. 16 523
[16]Dietl T 2006 Nat. Mater. 5 673
[17]Kane M H, Strassburg M, Fenwick W E, Asghar A, Payne A M, Gupta S, Song Q, Zhang Z J, Dietz N, Summers C J and Ferguson I T 2006 J. Cryst. Growth 287 591
[18]Ozaki N, Okabayashi I, Kumekawa T, Nishizawa N, Marcet S, Kuroda S and Takita T 2005 Appl. Phys. Lett. 87 192116
[19]Kirby S and van Dover R B 2007 MRS Proc. 1035 L03
[20]Janotti A and van de Walle C G 2007 Phys. Rev. B 76 165202
[21]Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[22]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[23]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24]Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26]Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[27]Sernelius B E, Berggren K F, Jin Z C, Hamberg I and Granqvist C G 1988 Phys. Rev. B 37 10244
[28]Chevrier V L, Ong S P, Armiento R, Chan M K Y and Ceder G 2010 Phys. Rev. B 82 075122
[29]Stashans A, Kotomin E and Calais J L 1994 Phys. Rev. B 49 14854
[30]Choi S and Takeuchi T 1983 Phys. Rev. Lett. 50 1474
[31]Stashans A and Rivera R 2010 Mod. Phys. Lett. B 24 1963
[32]Leiter F, Alves H, Pfisterer D, Romanov N G, Hofmann D M and Meyer B K 2003 Physica B 340 201
[33]Maldonado F and Stashans A 2009 Phys. Scr. 80 065601
[34]Janotti A and van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[35]van de Walle C G 2000 Phys. Rev. Lett. 85 1012
[36]Banerjee S, Mandal M, Gayathri N and Sardar M 2007 Appl. Phys. Lett. 91 182501
[37]Maldonado F and Stashans A 2010 J. Phys. Chem. Solids 71 784
[38]Goldman A 1999 Handbook of Modern Ferromagnetic Materials (Boston: Kluwer) p 367
[39]Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[40]Kasuya T 1956 Prog. Theor. Phys. 16 45
[41]Yosida K 1957 Phys. Rev. 106 893
[42]Yan L, Ong C K and Rao X S 2004 J. Appl. Phys. 96 508
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 097102
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 097102
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 097102
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 097102
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 097102
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 097102
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 097102
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 097102
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 097102
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 097102
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 097102
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 097102
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 097102
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 097102
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 097102
Viewed
Full text


Abstract