Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 030303    DOI: 10.1088/0256-307X/33/3/030303
GENERAL |
Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array
Yang Li1,2, Sheng-Kai Liao1,2**, Fu-Tian Liang1,2, Qi Shen1,2, Hao Liang1,2, Cheng-Zhi Peng1,2
1Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315
2Shanghai Branch, Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315
Cite this article:   
Yang Li, Sheng-Kai Liao, Fu-Tian Liang et al  2016 Chin. Phys. Lett. 33 030303
Download: PDF(513KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum random number generators adopting single photon detection have been restricted due to the non-negligible dead time of avalanche photodiodes (APDs). We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32$\times $32 APD array is up to tens of Gbits/s.
Received: 24 October 2015      Published: 31 March 2016
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/030303       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/030303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Li
Sheng-Kai Liao
Fu-Tian Liang
Qi Shen
Hao Liang
Cheng-Zhi Peng
[1]Menezes A J, van Oorschot P C and Vanstone S A 1996 Handbook of Applied Cryptography (Florida: CRC Press)
[2]Niederreiter H 1992 Random Number Generation and Quasi-Monte Carlo Methods (Philadelphia: SIAM)
[3]Asmussen s and Glynn P W 2007 Stochastic Simulation: Algorithms and Analysis (New York: Springer Science & Business Media)
[4]Ranasinghe D C, Lim D, Devadas S et al 2005 Electron. Lett. 41 891
[5]Jennewein J, Achleitner U, Weihs G et al 2000 Rev. Sci. Instrum. 71 1675
[6]Ren M, Wu E, Liang Y et al 2011 Phys. Rev. A 83 023820
[7]Nie Y Q, Zhang F, Zhang Z et al 2014 Appl. Phys. Lett. 104 051110
[8]Hadfield R H et al 2009 Nat. Photon. 3 696
[9]Aull B F, Loomis A H, Young D J et al 2002 Lincoln Lab. J. 13 335
[10]Tisa S, Villa F, Giudice A et al 2015 IEEE J. Sel. Top. Quantum Electron. 21 23
[11]von Neumann J 1951 Natl. Bur. Stand. Appl. Math. Ser. 12 36
[12]Paulus P, Langenhorst R and Jager D 1988 IEEE J. Quantum Electron. 24 1519
[13]Rukhin A, Soto J, Nechvatal J et al 2010 Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (NIST Special Publication)
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 030303
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030303
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 030303
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 030303
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 030303
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 030303
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 030303
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 030303
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 030303
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 030303
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 030303
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 030303
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 030303
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 030303
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 030303
Viewed
Full text


Abstract