Chin. Phys. Lett.  2016, Vol. 33 Issue (03): 030302    DOI: 10.1088/0256-307X/33/3/030302
GENERAL |
Biased Random Number Generator Based on Bell's Theorem
Yong-Gang Tan**, Yao-Hua Hu, Hai-Feng Yang
Physics and Information Engineering Department, Luoyang Normal College, Luoyang 471022
Cite this article:   
Yong-Gang Tan, Yao-Hua Hu, Hai-Feng Yang 2016 Chin. Phys. Lett. 33 030302
Download: PDF(411KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a biased random number generation protocol whose randomness is based on the violation of the Clauser–Horne inequality. Non-maximally entangled state is used to maximize the Bell violation. Due to the rotational asymmetry of the quantum state, the ratio of 0s to 1s varies with the measurement bases. The experimental partners can then use their measurement outcomes to generate the biased random bit string. The bias of their bit string can be adjusted by altering their choices of measurement bases. When this protocol is implemented in a device-independent way, we show that the bias of the bit string can still be ensured under the collective attack.
Received: 27 October 2015      Published: 31 March 2016
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/3/030302       OR      https://cpl.iphy.ac.cn/Y2016/V33/I03/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yong-Gang Tan
Yao-Hua Hu
Hai-Feng Yang
[1]Bennett C H and Brassard G 1984 Proceeding IEEE International Conference of Computers, Systems, and Signal Processing (New York: IEEE) p 175
[2]Ekert A K 1991 Phys. Rev. Lett. 67 661
[3]Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[4]Rarity J G, Owens P C M and Tapster P R 1994 J. Mod. Opt. 41 2435
[5]Jennewein T, Achleitner U, Weihs G, Weinfurter H and Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
[6]Gabriel C, Wittmann C and Sych D 2010 Nat. Photon. 4 711
[7]Jian Y, Ren M, Wu E, Wu G and Zeng H 2011 Rev. Sci. Instrum. 82 073109
[8]Ren M, Wu E, Liang Y, Jian Y, Wu G and Zeng H 2011 Phys. Rev. A 83 023820
[9]Sanguinetti B, Martin A, Zbinden H and Gisin N 2014 Phys. Rev. X 4 031056
[10]Marandi A, Leindecker N C, Vodopyanov K L and Byer R L 2012 Opt. Express 20 19322
[11]England D G, Bustard P J, Moffatt D J, Nunn J and Lausten R 2014 Appl. Phys. Lett. 104 051117
[12]Pironio S, Acín A, Massar S, Boyer D L G A and Matsukevich D N 2010 Nature 464 1021
[13]Bell J S 1965 Phsycis 1 195
[14]Clauser J F, Horne M A, Shimony A and Holt R A 1969 Phys. Rev. Lett. 23 880
[15]Clauser J and Horne M A 1974 Phys. Rev. D 10 526
[16]Freedman S and Clauser J 1972 Phys. Rev. Lett. 28 938
[17]Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[18]Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett. 49 1804
[19]Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
[20]Ou Z and Mandel L 1988 Phys. Rev. Lett. 61 50
[21]Shih Y and Alley C 1988 Phys. Rev. Lett. 61 2921
[22]Kwiat P et al 1995 Phys. Rev. Lett. 75 4337
[23]Weihs G, Jennewein T, Simon C, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 81 5039
[24]Tittel W, Brendel J, Zbinden H and Gisin N 1998 Phys. Rev. Lett. 81 3563
[25]Rowe M A, Kielpinski D, Meyer V et al 2001 Nature 409 791
[26]Ansmann M, Wang H, Bialczak R C, Hofheinz M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Wenner J, Cleland A N and Martinis J M 2009 Nature 461 504
[27]Hofmann J, Krug M, Ortegel N, Gérard L, Weber M, Rosenfeld W and Weinfurter H 2012 Science 337 72
[28]Scheidl T, Ursin R, Kofler J et al 2010 Proc. Natl. Acad. Sci. USA 107 19708
[29]Acín A, Brunner N, Gisin N et al 2007 Phys. Rev. Lett. 98 230501
[30]Pironio S, Acín A, Brunner N et al 2009 New J. Phys. 11 045021
[31]Masanes L, Pironio S and Acin A 2011 Nat. Commun. 2 238
[32]H?nggi E and Renner R 2010 arXiv:1009.1833v2 [quant-ph]
[33]Li H W, Paw?owski M, Yin Z Q, Guo G C and Han Z F 2012 Phys. Rev. A 85 052308
[34]Lo H K, Chau H F and Ardehali M 2005 J. Cryptology 18 133
[35]Eberhard P H 1993 Phys. Rev. A 47 R747
[36]Brunner N, Gisin N, Scarani V and Simon C 2007 Phys. Rev. Lett. 98 220403
[37]Cabello A and Larsson J A 2007 Phys. Rev. Lett. 98 220402
[38]Tamaki K, Koashi M and Imoto N 2003 Phys. Rev. Lett. 90 167904
[39]Tamaki K and Lükenhaus N 2004 Phys. Rev. A 69 032316
[40]Tsirelson B S 1980 Lett. Math. Phys. 4 93
[41]Lucamarini M et al 2012 Phys. Rev. A 86 032325
[42]Ivanovic I D 1987 Phys. Lett. A 123 257
[43]Dieks D 1988 Phys. Lett. A 126 303
[44]Peres A 1988 Phys. Lett. A 128 19
[45]Chelfes A 1988 Phys. Lett. A 128 19
[46]Peres A and Wootters W K 1991 Phys. Rev. Lett. 66 1119
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 030302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 030302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 030302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 030302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 030302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 030302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 030302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 030302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 030302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 030302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 030302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 030302
Viewed
Full text


Abstract