Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 127501    DOI: 10.1088/0256-307X/32/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4
CHEN Xu-Liang1,2, SONG Wen-Hai1, YANG Zhao-Rong1,2,3**
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong 2015 Chin. Phys. Lett. 32 127501
Download: PDF(678KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at HC2 defined as a steep downward peak in the derivative of the MH curve is clearly drawn. It is found that TN versus H and HC2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the TH phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100 K and TN.

Received: 22 August 2015      Published: 05 January 2016
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  75.50.Ee (Antiferromagnetics)  
  75.30.Et (Exchange and superexchange interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/127501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xu-Liang
SONG Wen-Hai
YANG Zhao-Rong

[1] Lee S H, Broholm C, Ratcliff W, Gasparovic G, Huang Q, Kim T H and Cheong S W 2002 Nature 418 856
[2] Sushkov A B, Tchernyshyov O, Ratcliff I I W, Cheong S W and Drew H D 2005 Phys. Rev. Lett. 94 137202
[3] Hemberger J, Rudolf T, Krug von Nidda H A, Mayr F, Pimenov A, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 97 087204
[4] Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V and Loidl A 2007 Phys. Rev. B 75 052410
[5] Miyata A, Ueda H, Ueda Y, Sawabe H and Takeyama S 2011 Phys. Rev. Lett. 107 207203
[6] Ueda H, Katori H A, Mitamura H, Goto T and Takagi H 2005 Phys. Rev. Lett. 94 047202
[7] Matsuda M, Ueda H, Kikkawa A, Tanaka Y, Katsumata K, Narumi Y, Ueda Y and Lee S H 2007 Nat. Phys. 3 397
[8] Fennie C J and Rabe K M 2006 Phys. Rev. Lett. 96 205505
     Fennie C J and Rabe K M 2005 Phys. Rev. B 72 214123
[9] Felea V, Yasin S, Günther A, Deisenhofer J, Krug von Nidda H A, Zherlitsyn S, Tsurkan V, Lemmens P, Wosnitza J and Loidl A 2012 Phys. Rev. B 86 104420
[10] Plumier R 1966 J. Appl. Phys. 37 964
[11] Chen X L, Yang Z R, Tong W, Huang Z H, Zhang L, Zhang S L, Song W H, Pi L, Sun Y P, Tian M L and Zhang Y H 2014 J. Appl. Phys. 115 083916
[12] Plumier R 1966 J. Phys. (Paris) 27 213
[13] Kleinberger R and de Kouchkovsky R 1966 C. R. Acad. Sci. Paris Ser. B 262 628
[14] Akimitsu J, Siratori K, Shirane G, Iizumi M and Watanabe T 1978 J. Phys. Soc. Jpn. 44 172
[15] Hemberger J, Krug von Nidda H A, Tsurkan V and Loidl A 2007 Phys. Rev. Lett. 98 147203
[16] Dugdale J S and MacDonald D K C 1955 Phys. Rev. 98 1751
[17] Morton I P and Rosenberg H M 1962 Phys. Rev. Lett. 8 200

Related articles from Frontiers Journals
[1] Pengpeng Shi. A Nonlinear Theoretical Model of Magnetization and Magnetostriction for Ferromagnetic Materials under Applied Stress and Magnetic Fields[J]. Chin. Phys. Lett., 2020, 37(8): 127501
[2] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 127501
[3] Li-Yu HAO, Tie YANG, Xiao-Tian WANG, Ming TAN. Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound[J]. Chin. Phys. Lett., 2019, 36(6): 127501
[4] Hao He, Jiang-Tao Zhao, Zhen-Lin Luo, Yuan-Jun Yang, Han Xu, Bin Hong, Liang-Xin Wang, Rui-Xue Wang, Chen Gao. The Electric-Field Controllable Non-Volatile 35$^{\circ}$ Rotation of Magnetic Easy Axis in Magnetoelectric CoFeB/(001)-Cut Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_{3}$-25%PbTiO$_{3}$ Heterostructure[J]. Chin. Phys. Lett., 2016, 33(06): 127501
[5] ZHAO Ke-Han, WANG Yu-Hang, SHI Xiao-Lan, LIU Na, ZHANG Liu-Wan. Ferroelectricity in the Ferrimagnetic Phase of Fe1?xMnxV2O4[J]. Chin. Phys. Lett., 2015, 32(08): 127501
[6] WANG Kai, LIU Tie, GAO Peng-Fei, WANG Qiang, LIU Yin, HE Ji-Cheng. Magnetostriction Increase of Tb0.3Dy0.7Fe1.95 Alloy Prepared by Solidification in High Magnetic Fields[J]. Chin. Phys. Lett., 2015, 32(03): 127501
[7] LI Yan-Qin LI Xue-Hui. Influence of Perpendicular Magnetic Field on Apparent Density and Microstructure of Magnetic Fluid[J]. Chin. Phys. Lett., 2012, 29(10): 127501
[8] ZHANG Chang-Sheng, MA Tian-Yu, PAN Xing-Wen, YAN Mi. Domain Rotation Simulation of the Magnetostriction Jump Effect of <110> Oriented TbDyFe Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 127501
[9] ZHOU Yun**, CHEN Miao-Gen, FENG Zhen-Jie, WANG Xin-Yan, CUI Yu-Jian, ZHANG Jin-Cang . High Magnetoelectric Coupling in Nano–Microscale Particulate Composites at Low Frequency[J]. Chin. Phys. Lett., 2011, 28(10): 127501
[10] WANG Hong-Tao, ZHOU Tong, HONG Bo, TAO Qian, XU Zhu-An** . Magnetic Properties of Orthorhombic Perovskite Ho1−xLaxMnO3[J]. Chin. Phys. Lett., 2011, 28(2): 127501
[11] LIU Jun-Ming, , CHAN-WONG Lai-Wa, CHOY Chung-Loong. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass[J]. Chin. Phys. Lett., 2009, 26(8): 127501
[12] HAO Yan-Ming, ZHANG Yan-Yan, JIANG Xin-Yuan, GAO Chun-Jing, WU Yan-Zhao. Thermal Expansion Anomaly and Spontaneous Magnetostriction of Y2Fe14Al3 Compound[J]. Chin. Phys. Lett., 2009, 26(2): 127501
[13] YANG Chang-Ping, DENG Heng, CHEN Shun-Sheng, WANG Hao, WEN Zhen-Chao, HAN Xiu-Feng, K. Bä, rner. Correlation between Electroresistance and Magnetoresistance in Slight Oxygen-Deficient Nd0.67Sr0.33MnO3-δ Polycrystalline Ceramics[J]. Chin. Phys. Lett., 2008, 25(10): 127501
[14] PEI Yong-Mao, FANG Dai-Ning. Young's Modulus Anisotropy and Magnetomechanical Damping of [110]Oriented Tb0.3 Dy0.7 Fe1.95 Alloy[J]. Chin. Phys. Lett., 2007, 24(6): 127501
[15] WANG Jing-Min, WANG Yu-Fei, JIANG Cheng-Bao, XU Hui-Bin. Magnetostrain and Magnetization of the Ni50Mn27.5Ga22.5 Single Crystal[J]. Chin. Phys. Lett., 2006, 23(5): 127501
Viewed
Full text


Abstract