CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4 |
CHEN Xu-Liang1,2, SONG Wen-Hai1, YANG Zhao-Rong1,2,3** |
1Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
2High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 |
|
Cite this article: |
CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong 2015 Chin. Phys. Lett. 32 127501 |
|
|
Abstract The effect of an external magnetic field on the structural and magnetic properties of bond frustrated ZnCr2Se4 at low temperatures is investigated using magnetization, dielectric constants and thermal conductivity experiments. With an increase in the magnetic field H, the antiferromagnetic transition temperature TN is observed to shift progressively toward lower temperatures. The corresponding high temperature cubic (Fd3m) to low temperature tetragonal (I41amd) structural transition is tuned simultaneously due to the inherent strong spin-lattice coupling. In the antiferromagnetic phase, an anomaly at HC2 defined as a steep downward peak in the derivative of the M–H curve is clearly drawn. It is found that TN versus H and HC2 versus T exhibit a consistent tendency, indicative of a field-induced tetragonal (I41amd) to cubic (Fd3m) structural transition. The transition is further substantiated by the field-dependent dielectric constant and thermal conductivity measurements. We modify the T–H phase diagram, highlighting the coexistence of the paramagnetic state and ferromagnetic clusters between 100 K and TN.
|
|
Received: 22 August 2015
Published: 05 January 2016
|
|
PACS: |
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
|
|
|
[1] Lee S H, Broholm C, Ratcliff W, Gasparovic G, Huang Q, Kim T H and Cheong S W 2002 Nature 418 856
[2] Sushkov A B, Tchernyshyov O, Ratcliff I I W, Cheong S W and Drew H D 2005 Phys. Rev. Lett. 94 137202
[3] Hemberger J, Rudolf T, Krug von Nidda H A, Mayr F, Pimenov A, Tsurkan V and Loidl A 2006 Phys. Rev. Lett. 97 087204
[4] Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V and Loidl A 2007 Phys. Rev. B 75 052410
[5] Miyata A, Ueda H, Ueda Y, Sawabe H and Takeyama S 2011 Phys. Rev. Lett. 107 207203
[6] Ueda H, Katori H A, Mitamura H, Goto T and Takagi H 2005 Phys. Rev. Lett. 94 047202
[7] Matsuda M, Ueda H, Kikkawa A, Tanaka Y, Katsumata K, Narumi Y, Ueda Y and Lee S H 2007 Nat. Phys. 3 397
[8] Fennie C J and Rabe K M 2006 Phys. Rev. Lett. 96 205505
Fennie C J and Rabe K M 2005 Phys. Rev. B 72 214123
[9] Felea V, Yasin S, Günther A, Deisenhofer J, Krug von Nidda H A, Zherlitsyn S, Tsurkan V, Lemmens P, Wosnitza J and Loidl A 2012 Phys. Rev. B 86 104420
[10] Plumier R 1966 J. Appl. Phys. 37 964
[11] Chen X L, Yang Z R, Tong W, Huang Z H, Zhang L, Zhang S L, Song W H, Pi L, Sun Y P, Tian M L and Zhang Y H 2014 J. Appl. Phys. 115 083916
[12] Plumier R 1966 J. Phys. (Paris) 27 213
[13] Kleinberger R and de Kouchkovsky R 1966 C. R. Acad. Sci. Paris Ser. B 262 628
[14] Akimitsu J, Siratori K, Shirane G, Iizumi M and Watanabe T 1978 J. Phys. Soc. Jpn. 44 172
[15] Hemberger J, Krug von Nidda H A, Tsurkan V and Loidl A 2007 Phys. Rev. Lett. 98 147203
[16] Dugdale J S and MacDonald D K C 1955 Phys. Rev. 98 1751
[17] Morton I P and Rosenberg H M 1962 Phys. Rev. Lett. 8 200 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|