Chin. Phys. Lett.  2015, Vol. 32 Issue (12): 127403    DOI: 10.1088/0256-307X/32/12/127403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Doping Evolution of the Superconducting Gap Structure in Heavily Hole-Doped Ba1?xKxFe2As2: a Heat Transport Study
HONG Xiao-Chen1, WANG Ai-Feng2, ZHANG Zhen1, PAN Jian1, HE Lan-Po1, LUO Xi-Gang2,4, CHEN Xian-Hui2,4, LI Shi-Yan1,3**
1State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433
2Hefei National Laboratory for Physical Science at Microscale and Department of Physics,University of Science and Technology of China, Hefei 230026
3Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Cite this article:   
HONG Xiao-Chen, WANG Ai-Feng, ZHANG Zhen et al  2015 Chin. Phys. Lett. 32 127403
Download: PDF(852KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform systematic thermal conductivity measurements on heavily hole-doped Ba1?xKxFe2As2 single crystals with 0.747≤x ≤0.974. At x=0.747, the κ0/T is negligible, indicating a nodeless superconducting gap. A small residual linear term κ0/T (0.035 mW?K?2cm?1) appears at x=0.826, and it increases slowly up to x=0.974, followed by a substantial increase of more than 20 times to the pure KFe2As2 (x=1.0). This doping dependence of κ0/T clearly shows that the nodal gap appears near x=0.8, possibly associated with the change of Fermi surface topology. The small values of κ0/T from x=0.826 to 0.974 are consistent with the ?-shaped nodal s-wave gap recently revealed by angle-resolved photoemission spectroscopy experiments at x=0.9. Furthermore, the substantial increase of κ0/T from x=0.974 to 1.0 is inconsistent with a symmetry-imposed d-wave gap in KFe2As2, and a possible nodal gap structure in KFe2As2 is discussed.
Received: 02 November 2015      Published: 05 January 2016
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  74.25.fc (Electric and thermal conductivity)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/12/127403       OR      https://cpl.iphy.ac.cn/Y2015/V32/I12/127403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HONG Xiao-Chen
WANG Ai-Feng
ZHANG Zhen
PAN Jian
HE Lan-Po
LUO Xi-Gang
CHEN Xian-Hui
LI Shi-Yan
[1] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[2] Dong J K et al 2010 Phys. Rev. Lett. 104 087005
[3] Hashimoto K et al 2010 Phys. Rev. B 82 014526
[4] Reid J -Ph et al 2012 Phys. Rev. Lett. 109 087001
[5] Okazaki K et al 2012 Science 337 1314
[6] Fletcher J D et al 2009 Phys. Rev. Lett. 102 147001
[7] Hicks C W et al 2009 Phys. Rev. Lett. 103 127003
[8] Hashimoto K et al 2012 Phys. Rev. Lett. 108 047003
[9] Nakai Y et al 2010 Phys. Rev. B 81 020503(R)
[10] Hashimoto K et al 2010 Phys. Rev. B 81 220501(R)
[11] Zhang Y et al 2012 Nat. Phys. 8 371
[12] Qiu X et al 2012 Phys. Rev. X 2 011010
[13] Tafti F F et al 2013 Nat. Phys. 9 349
[14] Thomale R et al 2011 Phys. Rev. Lett. 107 117001
[15] Ding H et al 2008 Europhys. Lett. 83 47001
[16] Sato T et al 2009 Phys. Rev. Lett. 103 047002
[17] Ota Y et al 2014 Phys. Rev. B 89 081103(R)
[18] Nakayama K et al 2011 Phys. Rev. B 83 020501(R)
[19] Xu N et al 2013 Phys. Rev. B 88 220508(R)
[20] Wang A F et al 2014 Phys. Rev. B 89 064510
[21] Sutherland M et al 2003 Phys. Rev. B 67 174520
[22] Li S Y et al 2008 Phys. Rev. B 77 134501
[23] We note in a recent paper, the thermal conductivity of Ba1-xKxFe2As2 single crystals with 0.76≤x≤1 was measured down to ~250 mK.[24] Their results are very different from ours. They observed non-monotonic doping dependance of κ0/T and the κ0/T of their x=0.93 and 0.88 samples (Tc=7.3 and 11 K) are much larger than those of our samples with similar Tc
[24] Watanabe D et al 2014 Phys. Rev. B 89 115112
[25] Shakeripour H, Petrovic C and Taillefer L 2009 New J. Phys. 11 055065
[26] Graf M J et al 1996 Phys. Rev. B 53 15147
[27] Suzuki M et al 2002 Phys. Rev. Lett. 88 227004
[28] Lowell J and Sousa J B 1970 J. Low Temp. Phys. 3 65
[29] Proust C et al 2002 Phys. Rev. Lett. 89 147003
[30] Matsuda Y, Izawa K and Vekhter I 2006 J. Phys.: Condens. Matter 18 R705
[31] Hill R W et al 2004 Phys. Rev. Lett. 92 027001
[32] Hong X C et al 2013 Phys. Rev. B 87 144502
[33] Zhang Z et al 2015 Phys. Rev. B 91 024502
[34] Malaeb W et al 2014 Phys. Rev. B 90 195124
[35] Abdel-Hafiez M et al 2013 Phys. Rev. B 87 180507(R)
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 127403
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 127403
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 127403
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 127403
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 127403
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 127403
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 127403
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 127403
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 127403
[10] Cheng Zheng, Dapeng Zhao, Xinqiang Cai, Wantong Huang, Fanqi Meng, Qinghua Zhang, Lin Tang, Xiaopeng Hu, Lin Gu, Shuai-Hua Ji, Xi Chen. Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(8): 127403
[11] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 127403
[12] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 127403
[13] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 127403
[14] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 127403
[15] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 127403
Viewed
Full text


Abstract