Chin. Phys. Lett.  2015, Vol. 32 Issue (11): 117303    DOI: 10.1088/0256-307X/32/11/117303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids
WU Zi-Hua, XIE Hua-Qing**, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui
Department of Materials Engineering, College of Engineering, Shanghai Second Polytechnic University, Shanghai 201209
Cite this article:   
WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan et al  2015 Chin. Phys. Lett. 32 117303
Download: PDF(683KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Organic–inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic–inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1?xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zn0.9Ag0.1O matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunction effect and a reduction in thermal conductivity. Zn0.9Ag0.1O/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT = 0.22.
Received: 08 July 2015      Published: 01 December 2015
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/11/117303       OR      https://cpl.iphy.ac.cn/Y2015/V32/I11/117303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zi-Hua
XIE Hua-Qing
WANG Yuan-Yuan
XING Jiao-Jiao
MAO Jian-Hui
[1] Shen L X, Shai X X and Dong G J 2013 Acta Phys. Sin. 62 247401 (in Chinese)
[2] Wu Z H, Xie H Q and Zhai Y B 2013 Appl. Phys. Lett. 103 243901
[3] Wang W J, Zhang Q H, Li J L, Liu X, Wang L J, Zhu J J, Luo W and Jiang W 2015 RSC Adv. 5 8988
[4] Pei Y, Lensch F J, Toberer E S, Medlin D L and Snyder G J 2011 Adv. Funct. Mater. 21 241
[5] Wu Z H, Xie H Q, Zhai Y B, Gan L H and Liu J 2015 Chin. Phys. B 24 34402
[6] Stein N, Peterman N, Theissmann R, Schierning G, Schmechel R and Wiggers H 2011 J. Mater. Res. 26 1872
[7] Zhang Q L, Jang W J, Li J L, Zhu J J, Wang L J, Zhua M F and Jiang W 2013 J. Mater. Chem. A 1 12109
[8] Kim K, Debnath P C, Lee D H, Kim S and Lee S Y 2011 Nanoscale Res. Lett. 6 552
[9] Zhang Q H, Ai X, Wang L J, Chang Y X, Luo W, Jiang W and Chen L D 2015 Adv. Funct. Mater. 25 966
[10] Wan Q, Xiong Z, Dai J, Rao J and Jiang F 2008 Opt. Mater. 30 817
[11] Zhang Q H, Ai X, Wang W J, Wang L J and Jiang W 2014 Acta Mater. 73 37
[12] Jood P, Mehta R J, Zhang Y, Peleckis G, Wang X, Siegel R W, Borca T T, Dou S X and Ramanath G 2011 Nano Lett. 11 4337
[13] Jung K H, Lee K H, Seo W S and Choi S M 2012 Appl. Phys. Lett. 100 253902
[14] Colder H, Guilmeau E, Harnois C, Marinel S, Retoux R and Savary E 2011 J. Eur. Ceram. Soc. 31 2957
[15] Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816
[16] Malen J A, Yee S K, Majumdar A and Segalman R A 2010 Chem. Phys. Lett. 491 109
[17] Baheti K, Malen A, Doak P, Reddy P, Jang S, Tilley T, Majumdar A and Segalman A 2008 Nano Lett. 8 715
[18] See K C, Feser J P, Chen C E, Majumdar A, Urban J J and Segalman R A 2010 Nano Lett. 10 4664
[19] Wang Y Y, Cai K F, Yin J L, An B J, Du Y and Yao X 2011 J. Nanopart. Res. 13 533
[20] Anno H, Fukamoto M, Heta Y, Koga K, Itahara H, Asahi R, Satomura R, Sannomiya M and Toshima N 2009 J. Electron. Mater. 38 1443
[21] Pintér E, Fekete Z A, Berkesi O, Makra P, Patzkó á and Visy C 2007 J. Phys. Chem. C 111 11872
[22] Du Y, Cai K, Shen S, An B, Qin Z and Casey P 2012 J. Mater. Sci.: Mater. Electron. 23 870
[23] Ueno H and Yoshino K 1986 J. Phys. Soc. Jpn. 55 4382
[24] He M, Tian Y F, Springer D, Putra I A, Xing G Z, Chia E M, Cheong S A and Wu T 2011 Appl. Phys. Lett. 99 222511
[25] Fan J W and Freer R 1995 J. Appl. Phys. 77 4795
[26] Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802
[27] Volnianska O, Boguslawski P, Kaczkowski J, Jakubas P, Jezierski A and Kaminska E 2009 Phys. Rev. B 80 245212
[28] Faleev S V and Léonard F 2008 Phys. Rev. B 77 214304
[29] Medlin D L and Snyder G J 2009 Curr. Opin. Colloid. 14 226
[30] Sumithra S, Takas N J, Misra D K, Nolting W M, Poudeu P F and Stokes K L 2011 Adv. Energy Mater. 1 1141
[31] Heremans J P, Thrush C M and Morelli D T 2005 J. Appl. Phys. 98 063703
[32] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[33] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[34] Reddy P, Jang S Y, Segalman R A and Majumdar A 2007 Science 315 1568
[35] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A and Maris H J 2003 J. Appl. Phys. 93 793
[36] Kuo S W, Li J C and Schmid A W 1992 Appl. Phys. A 55 289
[37] Asheghi M, Leung Y K, Wong S S and Goodson K E 1997 Appl. Phys. Lett. 71 1798
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 117303
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 117303
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 117303
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 117303
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 117303
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 117303
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 117303
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 117303
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 117303
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 117303
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 117303
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 117303
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 117303
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 117303
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 117303
Viewed
Full text


Abstract