Chin. Phys. Lett.  2015, Vol. 32 Issue (09): 098101    DOI: 10.1088/0256-307X/32/9/098101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Facile Route to Cotton-Like BiOCl Nanomaterial with Enhanced Dye-Sensitized Visible Light Photocatalytic Efficiency
ZHAO Mei, DONG Li-Feng**, LI Cheng-Dong, YU Li-Yan, LI Ping
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042
Cite this article:   
ZHAO Mei, DONG Li-Feng, LI Cheng-Dong et al  2015 Chin. Phys. Lett. 32 098101
Download: PDF(8364KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A facile route is developed to fabricate BiOCl porous cotton-like nanostructure by using Bi2O3 and hydrochloric acid as raw materials. The BiOCl nanomaterial is actually hierarchically structured by numerous ultrathin nanosheets. The nanosheets are around 50–500 nm in lateral size and 2–12 nm in thickness. High-resolution transmission electron microscopy and selected-area electron diffraction analyses indicate that single-crystalline BiOCl nanosheets have the predominant growth direction along [110], the bottom and top surfaces are {001} facets, and four lateral surfaces are {110} facets. The BiOCl nanosheets are dominantly enclosed by {001} facets. From the diffuse reflectance spectroscopy spectrum, the light absorption edge and band gap energy (Eg) are estimated to be 416 nm and 2.98 eV, respectively. The BiOCl photocatalyst possesses superior activity for methyl orange (MO) degradation under visible light irradiation and the photodegradation efficiency is up to 91.5%/180 min. The correlation between morphology and microstructure with enhanced MO-sensitized photodegradation performance under visible light is investigated.
Received: 06 May 2015      Published: 02 October 2015
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  82.50.-m (Photochemistry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/9/098101       OR      https://cpl.iphy.ac.cn/Y2015/V32/I09/098101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Mei
DONG Li-Feng
LI Cheng-Dong
YU Li-Yan
LI Ping
[1] Malato S, FernándezIbá?ez P, Maldonado M I, Blanco J and Gernjak W 2009 Catal. Today 147 1
[2] Mills A, Davies R H and Worsley D 1993 Chem. Soc. Rev. 22 417
[3] FerrariLima A M, De Souza R P, Mendes S S, Marques R G and Gimenes M L 2015 Catal. Today 241 40
[4] Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik E R, Ke X and Zhu H 2009 J. Am. Chem. Soc. 131 17885
[5] Wu H T, Fan J, Liu E Z and Hu X Y 2015 J. Alloys Compd. 623 298
[6] McLaren A, ValdesSolis T, Li G and Tsang S C 2009 J. Am. Chem. Soc. 131 12540
[7] Hu J S, Ren L L, Guo Y G, Liang H P, Cao A M, Wan L J and Bai C L 2005 Angew. Chem. Int. Ed. 44 1269
[8] Shi L, Liang L, Ma J, Meng Y N and Zhong S F 2014 Ceram. Int. 40 3495
[9] Zhang K L, Liu C M, Huang F Q and Zheng C 2006 Appl. Catal. B 68 125
[10] Li J, Yu Y and Zhang L Z 2014 Nanoscale 6 8473
[11] Yue W, Fang S Y and Ming W L 2013 Chin. J. Struct. Chem. 32 458
[12] Li D K, Pei L Z, Yang Y, Pei Y Q, Xie Y K and Zhang Q F 2012 e-J. Surf. Sci. Nanotechnol. 10 161
[13] Zhang L, Wang W Z, Sun S M, Jiang D and Gao E P 2015 Appl. Catal. B 162 470
[14] Gondal M A, Chang X F and Yamani Z H 2010 Chem. Eng. J. 165 250
[15] Zhang X C, Liu X X, Fan C M, Wang Y W and Wang Y F 2013 Appl. Catal. B 132 332
[16] Chen F, Liu H Q, Bagwasi S and Shen X X 2010 J. Photochem. Photobiol. A 215 76
[17] Wu S J, Wang C, Cui Y F and Wang T M 2010 Mater. Lett. 64 115
[18] Yu J H, Wei B, Zhu L, Gao H, Sun W J and Xu L L 2013 Appl. Surf. Sci. 284 497
[19] Wang Q Z, Hui J, Li J J, Cai Y X and Yin S Q 2013 Appl. Surf. Sci. 283 577
[20] Tan C W, Zhu G Q, Hojamberdiev M, Xu C and Liang J 2013 J. Cluster Sci. 24 1115
[21] Li G S, Jiang B, Xiao S N, Lian Z C and Zhang D Q 2014 R. Soc. Chem. 16 1975
[22] Wang Q Z, Hui J, Huang Y J, Ding Y M and Cai Y X 2014 Mater. Sci. Semiconductor Process. 17 87
[23] Butler M A 1977 J. Appl. Phys. 48 1914
[24] Lin X P, Huang T, Huang F Q, Wang W D and Shi J L 2006 J. Phys. Chem. B 110 24629
[25] Guan M L, Xiao C, Zhang J, Fan S J, An R, Cheng Q M, Xie J F, Zhou M, Ye B J and Xie Y 2013 J. Am. Chem. Soc. 135 10411
Related articles from Frontiers Journals
[1] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 098101
[2] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 098101
[3] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 098101
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 098101
[5] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 098101
[6] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 098101
[7] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 098101
[8] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 098101
[9] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 098101
[10] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 098101
[11] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 098101
[12] Zhu-Liang Wang, Hui Ma, Fang Wang, Min Li, Li-Guo Zhang, Xiao-Hong Xu. Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(10): 098101
[13] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 098101
[14] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 098101
[15] Suneetha Sebastian, Ajina C, C. P. G Vallabhan, V. P. N. Nampoori, P. Radhakrishnan, M. Kailasnath. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber[J]. Chin. Phys. Lett., 2013, 30(11): 098101
Viewed
Full text


Abstract